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Abstract Machine learning has immense potential to
enhance diagnostic and intervention research in the
behavioral sciences, and may be especially useful in
investigations involving the highly prevalent and hetero-
geneous syndrome of autism spectrum disorder. However,
use of machine learning in the absence of clinical domain
expertise can be tenuous and lead to misinformed conclu-
sions. To illustrate this concern, the current paper critically
evaluates and attempts to reproduce results from two
studies (Wall et al. in Transl Psychiatry 2(4):e100, 2012a;
PloS One 7(8), 2012b) that claim to drastically reduce time
to diagnose autism using machine learning. Our failure to
generate comparable findings to those reported by Wall and
colleagues using larger and more balanced data under-
scores several conceptual and methodological problems
associated with these studies. We conclude with proposed
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best-practices when using machine learning in autism
research, and highlight some especially promising areas for
collaborative work at the intersection of computational and
behavioral science.
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Introduction

The landscape of psychological and psychiatric research is
increasingly interdisciplinary, where novel insights often
stem from diverse expertise. The integrative study of aut-
ism spectrum disorder (ASD) represents an exemplar for
translational research of a psychiatric disorder (Amaral
et al. 2011). Theoretical and empirical contributions from
clinical, genetic, neuroscientific, and animal studies have
the potential to not only elucidate the causes of ASD, but
also to identify mechanisms for early diagnosis and indi-
vidualized interventions (Dawson et al. 2002; Levitt and
Campbell 2009).

In recent years, advanced computational and engineer-
ing methodologies have been employed to meet the needs
of cross-disciplinary applications in psychology and psy-
chiatry. For example, machine learning methods have
demonstrated success in areas such as bioinformatics
(Baldi 2001), affective computing (Picard 2000), behav-
ioral informatics (Black et al. 2013; Narayanan & Georgiou
2013), and medical diagnosis (Wei et al. 2005). Machine
learning—which builds upon sophisticated mathematical
learning, statistical estimation, and information theories—
is of particular interest to researchers as a generally
applicable computational framework for automatically
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discovering useful patterns in large amounts of data. A
learned data representation can, for instance, provide
insights into the processes that generated the data, help
visualize data to assist humans in clinical decision making,
and predict a target variable from a set of input features
(i.e., classification). Given these appealing affordances, it is
not surprising that the use of computational and engineer-
ing methodologies is rapidly evolving in the study of
neurocognitive disorders (Bone et al. 2014; Chaspari et al.
2013; Hu and Steinberg 2009; Ye et al. 2012).

One apparent utility of machine learning in autism
research is to create an efficient and robust diagnostic
algorithm based on human coded behaviors from diag-
nostic instruments such as the Autism Diagnostic Inter-
view-Revised (ADI-R; Lord et al. 1994) and the Autism
Diagnostic Observation Schedule (ADOS; Gotham et al.
2007; Lord et al. 2000). A certain degree of hand-con-
struction by experts (supported by rigorous statistical
analysis) is involved in creating these diagnostic instru-
ments, so it is reasonable to believe that objective machine
learning methods may provide more reliable performance
and/or increased efficiency by reducing redundancy within
an instrument. More rapid diagnostic procedures could
facilitate acquisition of the very large cohorts (over 10,000
subjects; Abrahams and Geschwind 2010) needed to reli-
ably uncover the complex neurogenic etiology of ASD.
Researchers have sought rapid categorical assessments of
ASD (Constantino et al. 2007; Lee et al. 2010), although
often at the cost of reduced sensitivity/specificity, or pop-
ulation sampling biased towards more severely impacted
individuals. Machine learning seems a viable option for
accelerating these diagnostic efforts by identifying essen-
tial nosological components; eliminating redundancy but
maintaining accuracy. However, as we will discuss and
demonstrate empirically in this paper, the task is not as
simple as it may initially appear.

While powerful, machine learning is prone to misinter-
pretation, especially when utilized in interdisciplinary
studies (not unlike other statistical techniques). The
application of engineering methods and interpretation of
the results they generate requires a thorough understanding
of both computational and clinical content domains. It is
essential that a computational researcher consider the
sources and properties of the data when applying machine
learning techniques; the manner in which data were elic-
ited/collected and what purposes they are intended to serve
are of paramount importance to ensure that interpretation
of results are accurate, unbiased, and not overstated.
Focusing solely on data processing, but ignoring context,
can produce misleading results and conclusions.
Conversely, the application of computational methods by
researchers outside machine learning communities can be a
precarious situation because there are numerous ways to
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misuse algorithms and misjudge their results.' As such, it is
crucial that computational and behavioral researchers col-
laborate in these endeavors, with each community learning
as much as possible about the other’s domain to relay best
practices, provide context, and assist in interpreting results.
This approach to inquiry is especially vital in an area with
such profound impact and public health significance as
mental health disorders research; if an algorithm is widely
purported to improve diagnostics or aid intervention, the
claim comes with tremendous social ramifications and
responsibility.

The current paper identifies several subtle but important
pitfalls when incorporating machine learning techniques in
autism diagnostics, leading to proposed best-practices for
future applications of machine learning in autism research.
The impetus for this contribution stems from two published
autism studies which sought to use machine learning
techniques for very rapid (several minutes) assessment of
ASD using the ADOS (Wall et al. 2012a) and the ADI-R
(Wall et al. 2012b). In addition to critically evaluating
these experimental contributions, we attempt to reproduce
the findings of Wall and colleagues using a larger, more
balanced corpus of ADOS and ADI-R data, while
accounting for potential sources of error that we will argue,
if not addressed, produce misleading and non-replicable
results. We also recommend a classification performance
metric called unweighted average recall that is better suited
for data with unbalanced classes than the more commonly
used measure of performance, accuracy. Finally, we close
by briefly outlining applications of machine learning and
signal processing that hold promise to advance our
understanding of autism diagnosis and intervention
research.

Wall et al. (2012a) Experiments and Critique

The experiments of Wall et al. (2012a) claim to shorten the
observation-based coding of the ADOS in an effort to
provide more time-efficient diagnoses while maintaining
validity. Our critical analysis of this study begins with a
brief overview of the ADOS instrument, followed by a
description of the data used, their experimental claims, and
our critique citing conceptual and methodological issues in
the approach.’

! For instance, model over-fitting can occur when training data is
included in testing sets, which can inflate confidence in a result that is
not likely to replicate in independent samples. Cross-validation is a
common solution.

2 The work of Wall et al. (2012a) has been extended in Duda et al.
(2014). While some methodological issues are resolved, primary
conceptual issues remain.
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Fig. 1 ADOS revised Module 1
algorithm (Gotham et al. 2007)
block-diagram
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Autism Diagnostic Observation Schedule

The ADOS is a widely used, standardized assessment for
diagnosing ASD that consists of 30-45 min of semi-
structured interaction with a trained administrator to elicit
and code behaviors relating to social interaction, commu-
nication, play, and imaginative use of materials (Lord et al.
2000). The ADOS consists of four distinct Modules that
vary depending on an individual’s age and verbal abilities.
We focus on Module 1 in this paper, as that was the module
used in the Wall et al. (2012a) study under examination. It
is designed for pre-verbal children and thus is most often
used for early, initial ASD diagnosis. Module 1 incorpo-
rates 29 behavioral codes and 10 subtasks/activities. The
ADOS algorithms were designed in an effort to map
standardized behavioral observations to an ASD diagnosis.
Creators of the instrument judiciously fused their collective
and extensive clinical knowledge, Diagnostic and Statisti-
cal Manual of Mental Disorders, Fourth Edition (DSM-1V;
American Psychiatric Association 2000) criteria, and sta-
tistical analytics to handcraft the algorithm (Fig. 1). The
resulting algorithm was tested against best-estimate clinical
(BEC) diagnosis that takes into consideration all the pre-
viously mentioned sources of information. The algorithm
begins with 29 ADOS codes scored on varying integer
scales from O to 3, with scores of 7 or 8 reserved for
behaviors not assessable during test administration. As a
pre-processing step, scores of 3 are mapped to 2, and all
scores of 7 and 8 are mapped to O (i.e., non-score-able) for
validity and reliability purposes (Lord et al. 2000). Next,
the most relevant and reliable codes indicative of a BEC
ASD diagnosis are selected. Of the 29 Module 1 codes, 12
are utilized in the original algorithm (Lord et al. 2000) and
14 in the revised algorithms (Gotham et al. 2007). The
revised algorithms® select separate sets of 14 codes
depending on the verbal proficiency of the child. The
remaining steps of the ADOS algorithm are comprised of
summation and thresholding to classify differences
between diagnostic groups. Specifically, all modified
scores from the 14 selected codes are summed to create a
combined Social Affect and Restricted, Repetitive Behav-
ior Total (SA + RRB). Finally, the SA + RRB Total is
used to classify three groups using two sets of thresholds.

3 Analyses we conducted in this paper use these revised ADOS
algorithms.

Feature
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* 3 mapped to2

Feature
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ADOS Total
Generation

ADOS
Diagnosis
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selected codes

* Threshold to produce 3
ADOS Diagnostic
categories

The three ADOS diagnostic groups are: Autism, Autism
Spectrum, and Non-Spectrum (or Below Cutoffs).

ADOS Data Used in Wall et al. (2012a)

The training data used in Wall et al. (2012a) consisted
primarily* of ADOS Module 1 administrations from the
Autism Genetics Resource Exchange (AGRE; Geschwind
et al. 2001) database. The AGRE data (at that time,
download meta-data unknown) contained 612 Autism
subjects (M = 6.6 year, SD = 4.1 year) and 11 Non-
spectrum subjects (M = 4.6 year, SD = 3.9 year); the
central Autism Spectrum class contained in the ADOS was
omitted. These numbers are post exclusion-criteria; in
particular, test administrations missing 50 % or more of
ADOS scores and subjects not in the age range of
2-17 years were excluded.

Critical Analysis of Wall et al. (2012a) ADOS Experiments

Wall et al. (2012a) sought to shorten the ADOS by using
machine learning techniques to automatically identify an
ADOS diagnosis (outcome) using the fewest number of
human expert-derived ADOS codes (features). The exper-
imental setup is illustrated in Fig. 2. From a systems’
point-of-view, this approach is an attempt at dimensionality
reduction, one of the many plausible goals for computa-
tional analysis in ASD. The authors used 16 tree-based
classifiers in the Weka toolkit of machine learning algo-
rithms (Hall et al. 2009) with default parameter settings.’
They found that two classifiers produced the highest
accuracy, and thus selected the one that used the fewest
number of codes: Alternating-Decision Tree (ADTree;
Freund and Mason 1999). Again, they omitted the central
ADOS Autism Spectrum class due to insufficient sample
size and instead conducted the simpler task of separating

4 Apart from 4 Non-Spectrum subjects from the Boston Autism
Consortium database.

5 Proper application of machine learning usually entails optimizing
parameter settings for a chosen classifier. The peak performance of a
classifier for a given dataset cannot be achieved without this step.
Since optimizing parameter settings for maximal classification
performance can lead to over-fitting, an independent test set is
required; often a third set called the Development set is used or
another layer of cross-validation is performed. In our experiments, we
use default parameter settings in order to most closely replicate the
methodology employed by Wall et al. (2012a).
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Fig. 2 Machine learning
approach to efficient ADOS
diagnosis employed by Wall
et al. (2012a)
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the more severe ADOS Autism cases from the ADOS Non-
ASD cases. Eight codes were found to produce 100 %
accuracy in the training set using cross-validation. Testing
on the remaining data revealed greater than 99.7 % recall®
(sensitivity) classifying children with an ADOS Autism
diagnosis and 94.4 % recall (specificity) detecting an
ADOS Non-Spectrum diagnosis in 1,000 simulated controls
(97 % unweighted average recall, the mean of sensitivity
and specificity)—simulated controls were generated by
randomly sampling scores from ADOS Non-spectrum
cases in the training data.

While these classification results appear very promising,
they need to be considered carefully within the context of
how the ADOS was designed in order to be judged reliable
and valid. As detailed below, the experimental setup of Wall
et al. (2012a) suffers from several conceptual problems
relating to the psychometric design and diagnostic principles
of the ADOS, and several methodological issues relating to
incorrect application of machine learning and data set limi-
tations. Collectively, these issues bring into question infer-
ences drawn from the results. We address the conceptual
issues first, followed by the methodological issues.

Conceptual Problems of Wall et al. (2012a) Study

There are at least four conceptual problems with the study.
First and foremost, Wall et al. (2012a) assert that a reduced

6 Recall can be used interchangeably with either sensitivity or
specificity, which differ only in naming convention of the “true”
class.
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set of ADOS codes—those utilized as inputs to the trained
ADTree classifier—reduce the time required to determine
an autism diagnosis “to minutes.” However, the ADOS
must be fully administered for reliable and valid ADOS
codes to be scored. More precisely, when ADOS scores
were initially subjected to reliability analyses, coders were
allowed to score any behavior in any subtask; meaning
ADOS coding reliability is only established when admin-
istering all subtasks. Therefore, the approach by Wall et al.
(2012a) may reduce ADOS codes, but it does not reduce
tasks, i.e., administration time.

Second, in the absence of any established theoretical or
empirical support, the authors implicitly assume incorrectly
that ADOS codes are valid outside the context of a full
ADOS administration. ADOS codes (input data to the
machine learning algorithm) are currently only considered
reliable and valid when elicited by a trained administrator
using standardized materials during semi-structured social
presses in the ADOS context. One of the primary assertions
of Wall et al. (2012a) is that their algorithms can enable
out-of-clinic screening; specifically, in-home (and thus
more affordable, they claim) procedures for diagnosis. Yet,
there is no empirical support that data collected from
unstructured interactions by non-experts in non-standard-
ized settings is sufficient for valid ADOS scoring with their
proposed model. Validation of an instrument that operates
in this scenario requires independent large-scale clinical
studies.

Third, as mentioned briefly before, the study disregards the
crucial middle ADOS Autism spectrum class. Only ADOS
Autism (reserved for the most severe social-communicative
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impairments) and Non-spectrum diagnoses were used in
classification, neglecting the subtlest, more heterogeneous,
and most-difficult-to-identify Autism Spectrum diagnostic
category. One could argue that classifying ADOS diagnosis
from ADOS codes is trivial with polarized categories. Thus,
the algorithm performance reported by Wall et al. (2012a)
would be expected to drop significantly if this middle cate-
gory were included, and we evaluate this hypothesis in our
replication experiments described later in this paper.

Finally, Wall et al. (2012a) predicted ADOS diagnosis
rather than BCE. As mentioned previously, BCE incorpo-
rates other measures in addition to the ADOS to achieve
higher diagnostic validity, and should be considered the
true “gold-standard.” Since the ADOS is one component
towards a final diagnosis, any inaccuracy predicting ADOS
diagnosis compounds diagnostic error. A more logical
approach for Wall et al. (2012a) would have been to
classify BCE from ADOS scores directly (thereby creating
a new “ADOS algorithm”), especially considering their
criticism of the “hand-selected” construction of the current
ADOS algorithms. However, as stated previously, this still
would not achieve the goal of reducing ADOS adminis-
tration time.

Methodological Problems of Wall et al. (2012a) Study

This study also suffers from a variety of methodological
issues that raise concerns about the reliability and validity
of the results obtained. First, the resulting classifier was not
validated on adequate data. The training data was severely
imbalanced, limiting statistical power. The validation (test)
data they used did not contain any “negative” instances,
that is, ADOS Non-spectrum samples. Thus, the algorithm
could not be validated for specificity on independent data.

To counter this data limitation, the authors simulated
“test” samples using instances from the training data—the
second methodological problem. Training data were used
to learn feature distributions, and samples were simulated
by randomly sampling scores for each code individually.
Yet, this synthesized test data is merely a “noisy” version
of the training data, wherein the test set is not independent.

Third, we feel that Wall et al. (2012a) should have
pursued more rigorous evaluation of their results. That is, it
appears that no effort was made to evaluate the reliability
or validity of their results aside from peripheral reporting
of accuracy on the test data. For instance, the reliability of
the selected codes and resulting accuracy could have been
assessed using data sub-sampling (e.g., bootstrapping).
Since those analyses were not reported, questions left
unanswered include: Were different subsets of codes
selected within each cross-validation fold? Were the
selected eight codes a unique set in achieving the reported

performance? How robust are the results to variations in
parameter settings?

Wall et al. (2012b) Experiments and Critique

Wall et al. (2012b) also claim to reduce time to diagnose
autism using machine learning, although here they focus on
behavioral-based codes from the ADI-R. In presenting our
critical analysis of this study, the ADI-R is introduced briefly,
followed by a description of the data used in Wall et al.
(2012b), their experimental claims, and our critique, again
citing conceptual and methodological issues in the approach.

Autism Diagnostic Interview: Revised

The ADI-R is a validated parent-report measure contrib-
uting to BCE diagnosis of children with autism. The
interview is conducted by a trained clinician, contains 93
items, and typically takes 3 h to complete. The ADI-R
focuses on the areas of reciprocal social interaction; com-
munication and language; and restricted and repetitive,
stereotyped interests and behaviors. Questions in the
interview provide a high degree of granularity; for exam-
ple, questions in the Reciprocal Social Interaction category
query specific social cues such as inappropriate facial
expressions, use of other people’s bodies to communicate,
and appropriateness of social response. Each ADI-R
question is asked twice, once about current behavior, and
once about either “most abnormal 4-5 years” or “ever”;
the algorithm uses the latter two time periods.

The ADI-R has an associated algorithm that generates
subtotal scores tapping its respective content areas;
wherein each subtotal has a threshold that must be met for a
diagnosis of Autism (much like the ADOS). If any cutoff is
not met, the subject is diagnosed as Non-Autism. Items are
given integer scores in the range 0-3, where a 0 indicates
the behavior was not currently present, and a 3 indicates
“extreme severity” of the coded behavior. There are also
scores of 7-9 indicating non-score-able items. As with the
ADOS, scores of 3 are mapped to 2, and scores of 7-9 are
mapped to 0 before summation. In addition to meeting all
subtotal thresholds, onset of the disorder must have been
evident by 36 months of age. Separate cutoff scores exist
for verbal and non-verbal subjects.

ADI-R Data Used in Wall et al. (2012b)

The AGRE ADI-R data was exclusively used for training
in Wall et al. (2012b), however, the authors made a key
decision to use the “Affected Status” diagnosis from
AGRE rather than an ADI-R diagnosis. The ADI-R does
not have validated algorithms for the broad autism
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spectrum, and thus only contains Autism and Non-Autism
diagnoses. The “Affected Status” diagnosis (AGRE Pedi-
gree Algorithms 2013) is meant to categorize subjects
based solely on the ADI-R, although these are not diag-
noses “per se”; additional categories are Not Quite Autism
(NQA) and Broad Spectrum (BS). AGRE states that NQA
represents individuals who narrowly missed reaching ADI-
R Autism criteria, and BS defines individuals who “show
patterns of impairment along the spectrum of pervasive
developmental disorders.” An additional class, Not-Met
(NM), is reserved for individuals who do not meet any of
the potential cutoffs for spectrum behavior. Affected Status
diagnoses of NOA, BS, and NM compose the ADI-R Non-
Autism category. The data distribution according to
Affected Status diagnosis was: 891 Autism subjects
(M = 8.1 year, SD = 4.4 year) and 75 Not-Met subjects
(M = 9.2 year, SD = 5.5 year).

Critical Analysis of Wall et al. (2012b) ADI-R Experiments

This study sought to shorten the ADI-R diagnostic instru-
ment through classification with ADI-R items, wherein the
selected classifier ideally learns a sparse transformation
(using a reduced set of items) from the ADI-R items to the
ADI-R diagnosis (Autism vs. Non-Autism)—or more
exactly, “Affected Status” diagnoses of Autism vs. Not-
Met. This experimental setup parallels that of Wall et al.
(2012a) that used the ADOS, with one major distinction:
certain ADI-R items are independently score-able, and thus
administration may be reducible, a point we will return to
at the end of our critique.

Wall et al. (2012b) used the AGRE dataset, which consists
primarily of children on the autism spectrum. Although the
ADI-R diagnosis contains two categories, the authors used
AGRE’s “Affected Status.” Again, Affected Status is a
4-category decision based on the ADI-R, created as an
ancillary severity measure for the AGRE corpus. Affected
Status divides ADI-R Non-Autism diagnosis into three sub-
categories. Wall etal. (2012b) chose to exclude the two middle
severity categories (NOA and BS)—thus, like Wall et al.
(2012a), comparing only the least and most severe cases. The
authors used 15 tree-based classifiers in the Weka toolkit (Hall
et al. 2009), finding the ADTree to perform best. They found
that only seven items were needed for a classifier to produce
100 % recall (sensitivity) classifying children with Autism,
98.7 % recall (specificity) in detecting Not-Met cases, and
99.9 % accuracy (there were more Autism instances). The
algorithm was tested on two other databases (Simons Simplex
Collection and Boston Autism Consortium) that had a com-
bined 1,976 Autism instances and 17 Not-Met instances,
resulting in high sensitivity (99.7 %) but low specificity
(53 %). Specifically, Wall et al. (2012b) reported that when
classifying 17 ADI-R Non-Autism test subjects, 8 were
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incorrect (i.e., they also received ADOS Autism Spectrum
diagnoses). While the reported results may seem impressive,
similar conceptual and methodological issues present in Wall
et al. (2012b) exist in this study that bring into question the
validity and reliability of the associated claims.

Conceptual Problems of Wall et al. (2012b) Study

Two primary conceptual issues are present in this study.
First, as mentioned before, the investigators excluded the
important middle-severity class, leaving only subjects with
high or low severity ASD symptoms according to the ADI-
R; thus, classification with ADI-R codes becomes much
simpler. We believe that inclusion of the middle severity
categories will severely and negatively impact performance
of this automated classifier, since those classes are the
easiest to confuse when estimating diagnoses from ADI-R
codes. Second, like Wall et al. (2012a), this study predicted
ADI-R diagnosis rather than BCE. As previously stated,
unless the machine learning diagnosis exactly matches
ADI-R diagnosis, error in classifying ADI-R diagnosis will
create further error in final diagnosis (decreasing the
validity of the ADI-R).

Methodological Problems of Wall et al. (2012b) Study

We identified three primary methodological problems with
this study. First, the results did not demonstrate generaliz-
ability between the datasets tested. Out of the 17 Not-Met
subjects in the test set, only 9 (53 %) were identified cor-
rectly, which is effectively chance performance. Addition-
ally, the authors did not validate the algorithm on adequate
data. That is, the validation (test) data contained only 17
Not-Met instances, which is less than 1 % of the entire test
data. This number is too small to reliably assess perfor-
mance. A second methodological issue is that of simulating
“test” samples using cases from the training data. As we
asserted for the Wall et al. (2012a) experiment, simulating
the minority class (Not-Mer) using the training data does not
produce an independent test set, bringing into question the
validity of the recall reported on the simulated samples.
Third, the authors did not evaluate feature reliability via
data subsampling (e.g., bootstrapping). Wall et al. (2012b)
reported that the ADTree classifier, when training on the
whole AGRE data, utilized seven items. However, the
algorithm could have selected other codes in each cross-
validation fold. The authors could have shown reliability of
those reported seven items within their data by presenting
(1) the percentage of time the codes were selected within
subsamples of the data, and/or (2) accuracy when the
algorithm was limited to only those seven items in each
cross-validation fold. Lastly, returning to the previous
point about the ADI-R being a good candidate measure for
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machine learning item reduction, it is surprising that Wall
et al. (2012b) did not administer the ADI-R with only a
reduced set of questions and test whether the shorter ver-
sion produced the same results as the full set of questions.

Methods

In addition to highlighting conceptual and methodological
concerns across these two studies, we conducted, and hence
report on, a set of experiments that attempt to reproduce the
findings of Wall et al. (2012a, b) using larger and more
balanced datasets. These experiments provide empirical
support for certain assertions in the preceding critiques. In
the following, we provide details about the experimental data
used in our experiments and specify better-practice technical
approaches for evaluating machine learning techniques.

Details of Diagnostic Data Used in Our Experiments

The experiments we conducted used subsets of two corpora
containing ADOS and ADI-R administration scores. Our
first corpus is AGRE, similar to Wall et al. (2012a, b);
however, our subset is larger (984 vs. 623 sessions) since it
was downloaded at a later date. The second corpus, which
we will refer to as Balanced Independent Dataset (BID), is
a combined research and clinical dataset, part of which was
utilized in experiments supporting the initial generation of
the ADOS and ADI-R algorithms (Gotham et al. 2007,
Lord et al. 2000).

There are two major differences between the corpora we
used and those used by Wall et al. (2012a, b). First, the AGRE
data is much more biased towards ASD subjects than the BID
data. That is, there are very few non-ASD samples in the
AGRE data, while the BID data is better balanced (details
below). Since confidence in recall for a class with a small
number of samples is low, regardless of the overall size of the
data set, this more balanced dataset is preferable for machine
learning experiments. Second, the BID data contains BCE,
including categories of Typically-Developing (TD), Autism,
Non-Autism ASD, and Non-ASD Developmental Disorder.
BCE diagnosis was used to validate the ADOS and ADI-R
algorithms, and thus is a useful (and arguably the more valid)
target variable for machine learning experiments. Conversely,
AGRE contains no explicit BCE diagnosis. However, we do
not present any experiments targeting BCE in this article.

ADOS Data Used in Our Experiments

Our ADOS experiments are conducted individually on ADOS
Module 1 administrations from AGRE data and BID data
(additional information is provided in “Appendix 1”). We
downloaded the AGRE data on April 6th, 2013 and applied the

same exclusion criteria as Wall et al. (2012a). Our AGRE
subset contained 984 subjects: 942 Autism (M = 6.8 year,
SD = 3.1 year), 30 Autism Spectrum (M = 5.6 year,
SD = 39 year), and 12 Non-Spectrum (M = 4.8 year,
SD = 3.1 year). The BID Module 1 data subset contained
1,033 subjects: 858 Autism (M = 5.2 year, SD = 3.6 year),
73 Autism Spectrum (M = 3.9 year, SD = 2.4 year), and 102
Non-Spectrum (M = 3.4 year, SD = 2.0 year). Importantly,
the BID data is more representative of the minority classes
(i.e., the AGRE data had only 12 Non-Spectrum subjects
compared to 102 in the BID data).

ADI-R Data Used in Our Experiments

Our ADI-R experiments are conducted on the AGRE ADI-
R data downloaded on April 6th, 2013 as well as the BID
ADI-R data (additional information is provided in
“Appendix 17). Our download of the AGRE data con-
tained 1,169 subjects: 1,027 Autism (M = 8.9 year,
SD = 3.0 year), 19 NOA (M = 10.2 year, SD = 3.0 year),
42 BS (M = 9.4 year, SD = 3.5 year), and 81 Not-Met
(M = 9.4 year, SD = 3.1 year)—thus a total of 142 ADI-
R Non-Autism subjects. In our experiments, we combine
the latter three categories back into the original ADI-R
Non-Autism diagnosis for reasons we will detail later. The
BID data was more balanced, containing 680 subjects in
the following categories: 462 Autism (M = 9.2 year,
SD = 3.1 year) and 218 Non-Autism (M = 9.4 year,
SD = 2.9 year). Following the procedure of Wall et al.
(2012b), we exclude certain ADI-R items for classification
that, for example, were scored more-often-than-not with an
exception code or had hand-written answers; and we only
include subjects in the age range of 5-17 years.

Technical Approach

In the following we describe the classification methodol-
ogy and performance metrics employed in our experiments.

Classification Methodology

The classification experiments in Wall et al. (2012a, b)
utilized a number of machine learning techniques’ and
found that a common tree-based classifier, ADTree, per-
formed best. Therefore, we focus our experiments on AD-
Tree to make more direct comparisons between their
findings and ours. Generally speaking, a classifier takes as
input a set of features (e.g., ADOS code scores) and learns a

7 It is advisable to test multiple algorithmic approaches to achieve
optimal accuracy; however, since this increases potential for over-
fitting and consequently inflating results, an independent, held-out
dataset is valuable.
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mapping to an output (e.g., ADOS diagnosis). The ADTree
classifier learns a set of rules (decisions based on feature
values) from which a prediction is made, but the tree’s
structure need not incorporate all features (i.e., ADOS code
scores) available as input. Since the ADTree classifier does
not necessarily use all features, it can be considered to
perform feature selection (or reduction of the feature set).
This is the approach used by Wall et al. (2012a).

In our experiments, we limit the available input features to
the ADTree algorithm. For example, Wall et al. (2012a)
asserted that only eight codes were needed for replication of
the ADOS algorithm, so we also limit the ADTree to use only
those eight codes as features. Since we are performing
multiple experiments that were not conducted in Wall et al.
(2012a), we cannot copy the exact tree structure and feature
weights. Further, that tree was trained using the entire AGRE
dataset, and we are only testing on a portion of that data. As
such, we re-train the ADTree (building a new tree structure
and assigning new feature weights) within each training
layer of cross-validation (detailed below), but only allow the
algorithm to select certain features. This re-training frame-
work allows the proposed approach a better chance of suc-
ceeding since it is being re-configured to the characteristics
of a new database. We also perform an experiment with the
remaining 21 codes. Some readers may be concerned that
this is an unfair comparison to the proposed eight codes since
there are more degrees of freedom. However, we argue that
this is not a serious concern because: (1) we use cross-vali-
dation, which is intended to prevent over-fitting; (2) not all
codes in the ADOS are equally informative of ADOS diag-
nosis; and (3) most importantly, the conclusion from Wall
etal. (2012a) is that the proposed eight codes can sufficiently
explain the ADOS, having removed redundant information.
Thus, the remaining 21 codes provide insight into the
information available in the “redundant” code set.

In order to test an algorithm’s classification performance
on unseen data, a method known as cross-validation (CV;
Kohavi 1995) is used. In k-fold CV, the data is partitioned
into k-subsets. A portion of the data is reserved for testing
(prediction) and the remaining data is used for training the
model. The testing data is alternated (k times) until all data
have been predicted. Wall et al. (2012a, b) used tenfold CV
(90 % train/10 % test), so we also used tenfold CV in our
experiments. The major assumption in CV is that the data
samples used for training and for testing are independent.
Thus, we exclude multiple evaluations from the same
observation (e.g., ADOS administration) in order to reduce
dependence between data folds.

Classification Performance Metric

Accuracy (percentage correct) is a poor performance
metric when the distribution of samples among classes is
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unbalanced since it emphasizes the majority class. Take,
for example, a classification between two groups, A
(positive) and B (negative), where Group A accounts for
90 % of the data. If a one-rule classifier is constructed that
always selects the majority class (A), the accuracy becomes
90 %, while the recall of classes A and B become 100 and
0 %, respectively. A common technique to address this
issue is to simultaneously observe measures like sensitivity
(e.g., Group A recall) and specificity (e.g., class B recall);
but a machine learning algorithm can optimize sensitivity
and specificity simultaneously. In our experiments we use a
measure called unweighted average recall (UAR; Schuller
et al. 2009), which is the mean of sensitivity (recall of
positive instances) and specificity (recall of negative
instances).® We prefer UAR to accuracy—which was used
in Wall et al. (2012a, b)—as a classification metric because
it equally weights each class regardless of number of
subjects that populate them, and has become a preferred
metric in modern machine learning tasks with unbalanced
data (Schuller et al. 2009, 2011). Baseline (chance) UAR is
1/N, where N is the number of classes. In our pedagogical
example above, UAR is only 50 %, which is chance per-
formance. “Appendix 1” contains additional information
on statistical testing with UAR for the interested reader.
Readers may also be curious why statistical measures
such as true positive rate, false positive rate, sensitivity,
and specificity are not analyzed simultaneously. This is due
to several factors that jointly support analyzing UAR. First,
a machine learning algorithm must optimize a single
objective function. This means we should optimize for a
single metric (e.g., UAR or accuracy) or some combination
of measures (in the form of a linear or non-linear equation).
Second, analyses should primarily focus on the measure
being optimized. More specifically, since our experiments
effectively optimize UAR, no explicit constraints are
placed on sensitivity and specificity. An optimal solution
with respect to UAR may result in unbalanced sensitivity
versus specificity; however, this may be a random reali-
zation of possible models that achieve this UAR since the
algorithm is only concerned with optimizing UAR.
Therefore, it is not meaningful to perform independent
statistical tests on other measures when optimizing for
UAR. Finally, UAR is a good first indicator of the infor-
mation captured by a modeling approach, wherein further
experiments could be conducted depending on a research-
er’s goals. For example, if a researcher wants to place more
emphasis on sensitivity than specificity, the objective
function can be modified as such. Nevertheless, these

8 Note that sensitivity and specificity only differ in the naming
convention of the “true” or “positive” class, and thus the term recall
applies to any class.
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Table 1 Codes used in calculating/predicting ADOS diagnosis, including: the proposed 8 codes of Wall et al. (2012a), the original and revised

ADOS algorithms, and our replication with the ADTree classifier

ADOS Codes
Al A2 A3 A4 A5 A6 A7 A8 Bl B2 B3

Overlap

B4 BS B6 B7 B8 B9 BIOBIIBI2 CI C2 DI D2 D3 D4 EI E2 E3 #same #total

Proposed 8 Walletal. (2012a), AuyN W [ I | [ ] [ I | [ I | 8 8
v2000 n " R ER ] [ ] " EE 5 12

ADOS v2007 no-words - n LI | LI I | LI B I ] [ I | ] 5 14
v2007 some-words n n [ B B | [ I B | [ | n [ I | [ ] 5 14

AGRE Aut/N (exact) ] ] ] [ I | LI I ] ] 5 9

AGRE, ASD/N n n n ] n n ] 37

Experiments BID, Aut/N ] L ] [ ] ] ] [ I ] [ ] 310
BID, ASD/N ] ] | I | n n | I | ] 4 10

The highlighted columns correspond to Wall’s proposed 8 codes. Code descriptions are provided in “Appendix 2”

Diagnoses: Aut, ADOS Autism; ASD, ADOS Autism Spectrum or Autism; N, ADOS Non-Spectrum. ADOS Code Groups: A, Language and
Communication; B, Social Reciprocity; C, Play; D, Restricted and Repetitive Behaviors. Note that AGRE Aut/N primarily differs from the
experiment that produced the proposed 8 in that the AGRE data were downloaded at different dates

measures are included (along with additional discussion on
their suitability for interpretation) in “Appendix 3”.

Results

Our critical analyses of the methods and results reported in
Wall et al. (2012a, b) reveal serious conceptual and
methodological implementation issues that call into ques-
tion the reliability and validity of their claims. As empirical
support for our critiques, we performed a set of experi-
ments attempting to classify ASD diagnosis using ADOS
and ADI-R item scores. In the following, we describe our
experiments with the ADOS and ADI-R along with results
we believe to be more valid.

Our Experimental Results with ADOS Data

The experiments in this section are conducted with ADOS
data in order to support our critique of Wall et al. (2012a),
wherein we replicate those experiments with a larger and
more balanced dataset.

Replicated Experiments with ADOS Data

Based on the results of Wall et al. (2012a), we targeted the
following question to guide our first experiment: Are the
proposed eight codes reproducible (i.e., selected) in a larger
and more balanced data set that includes the Autism
Spectrum class? Through performing classification with the
ADTree classifier in various data subsets, we look at the
features (codes) selected by the ADTree classifier. The
results (presented in Table 1) indicate that the proposed
eight codes are not, in fact, unique. In particular, even our
attempt at replication with the (updated) AGRE data pro-
duced very distinct results from the proposed eight codes:

only 5 of the 9 selected codes in our replication (from the
full 29) overlap. This finding raises concerns about
designing a simplified and generalizable instrument based
on a smaller set of derived codes. Additionally, little
overlap was observed when we included the (previously
excluded) ADOS Autism Spectrum class in the ASD group
and when evaluating in the BID data. The fact that the
selected codes changed considerably with even minor
variations in the data suggests that there is important
information in the remaining 21 codes and that the pro-
posed eight codes do not generalize.

To evaluate the information contained in the proposed
eight codes more directly, we carried out classification
experiments with cross-validation as in Wall et al. (2012a).
Results are displayed in Fig. 3. We find classification
performance is 87 % UAR when attempting replication
(ADOS Aut/Non-ASD classification in the AGRE data with
the ADTree classifier, while limiting the feature set to the
proposed eight codes), which is low compared to the
reported 100 % accuracy (and thus 100 % UAR) by Wall
et al. (2012a). Additionally, the remaining 21 codes pro-
duce 95 % UAR, and all 29 codes produce 96 % UAR.
Pair-wise statistical significance is difficult to achieve due
to the small size of the ADOS Non-ASD class in AGRE and
ceiling effects. Since the only difference between these two
experiments appears to be minor data variation (our AGRE
dataset is larger since it was downloaded at a later date and
we exclude the four Non-Spectrum subjects from the
Boston Autism Consortium database), these results suggest
the findings in Wall et al. (2012a) are not reproducible.

Higher statistical confidence is obtained for the fol-
lowing results with the more balanced BID dataset. Per-
formance of the proposed eight codes is 94 % UAR, while
the remaining 21 and all 29 produce 95 % UAR and 99 %
UAR, respectively. In this case, the performance of all 29
codes is significantly higher than the proposed eight codes
(»p <0.05). Thus, it is clear that some independent
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Fig. 3 Replicated experiments with ADOS codes: binary classifica-
tion performance (UAR; (sensitivity + specificity)/2) for various
subsets of ADOS codes. Note that the ADOS algorithm achieves
100 % UAR on this task by definition. Also note that statistical
significance in the AGRE data requires a relatively large effect size
due to the small size of the ADOS Non-ASD class. Diagnoses: Aut,

information exists in the remaining 21 codes and that the
proposed 8 do not robustly produce optimal performance
across datasets. These findings point toward the power of
redundancy in the ADOS coding system. Redundancy is a
core design component of well-designed, reliable, and
valid psychometric instruments, and has allowed the
ADOS algorithm to be refined since its initial development.
Further, the most differentiating features vary with devel-
opmental age and other behavioral attributes. Given the
heterogeneous symptomatic display in ASD, these “lessor”
features, so to speak, are likely needed to fully characterize
the spectrum.

Perhaps even more critical is the issue of excluding the
central ADOS Autism Spectrum class, which we suggest
leads to inflated accuracies and is of little value since it
does not reflect real-world clinical conditions. We vali-
dated this claim by examining the performance of this
approach when including the more subtle and ambiguous
ADOS Autism Spectrum samples, joining them with the
ADOS Autism samples to form a new ASD group (fol-
lowing DSM-V standards). We observe that two-class
classification performance drops significantly. The pro-
nounced drop when selecting from all 29 codes is 14 %
UAR (96-82 %; p = 0.19) in the AGRE data, and 9 %
UAR (99-90 %; p < 0.01) in the BID data. The drop when
selecting from the proposed 8 codes in the BID data is
11 % UAR (94-83 %; p < 0.01). Such large drops confirm
that excluding the middle class makes the approach by
Wall et al. (2012a) a significantly easier task than if it were
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ADOS Autism; ASD, ADOS Autism Spectrum or Autism; N, ADOS
Non-Spectrum. Feature sets: All 29, all 29 ADOS Module 1 codes.
Proposed 8, only the 8 codes proposed in Wall et al. (2012a);
Remaining 21, the remaining 21 of 29 codes. Significance levels: i
p < 0.10; *p < 0.05; and **p < 0.01

included. Lastly, in the BID data the full 29 code set sig-
nificantly outperformed the proposed 8 in the ASD/Non-
ASD task, yielding 90 % UAR compared to 83 % UAR
(p < 0.05).

Discussion of Our Experiments with ADOS Data

Taken together, our results indicate that the proposed eight
codes do not produce replicable results and do not gener-
alize across datasets in terms of code selection or classifi-
cation performance. It should also be noted that given a
large enough dataset, only the ADOS algorithm would
achieve perfect accuracy at this task. Additionally, the
critical middle severity class is shown to be more confus-
able, yet it was ignored in Wall et al. (2012a). The best
classification performance of ASD/Non-ASD classes in BID
used all 29 codes and produced 90 % UAR. It is also
noteworthy that, by definition, the ADOS algorithm
achieves 100 % UAR in this task; so a classifier that only
achieves 90 % UAR compounds diagnostic error. Coupled
with the fact that clinician administration and family par-
ticipation time is not actually reduced with the approach
proposed by Wall et al. (2012a), this error in predicting
ADOS diagnosis is without any benefit.

Our Experimental Results with ADI-R Data

In this section, we support our critique of Wall et al.
(2012b) with experimental evidence through replicated
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Table 2 UAR for classifying “Affected Status” and ADI-R
categories using ADI-R items
Items Affected Status AGRE BID
All Aut/N-M 99
Aut/B-ASD + N-M 88 87
Aut/B-ASD 79
Proposed 7 Aut/N-M 99
Aut/B-ASD 4 N-M 89 80
Aut/B-ASD 78

Diagnoses: Aut, ADI-R Autism; B-ASD, “Affected Status”
categories of Not Quite Autism (NQA) and Broad Spectrum; Not-Met
(N-M), “Affected Status” Not-Met category. B-ASD and Not-Met
together comprise the ADI-R Non-Autism diagnosis

experiments. We began this experiment by asking if the
proposed seven ADI-R codes selected by Wall et al.
(2012b) are reliable and optimal (generalizable) in terms of
the accuracy they produce. Since our ADOS experiments
demonstrated that the selected codes vary depending on the
data used, we forgo those experiments with the ADI-R and
instead examine classification performance (with UAR)
using the ADTree classifier and tenfold cross-validation.

In our replication experiment we find results similar to
those reported by Wall et al. (2012b). In particular, using
only those seven items and classifying with the two
extreme categories, we reach 99 % UAR in the AGRE
data. However, as we suggested earlier, excluding more
severely affected cases receiving an ADI-R Non-Autism
diagnosis makes this classification problem much simpler.
We validate this claim by examining performance when
those with “Affected Status™ classifications of NOA and BS
are included in the analysis (see Table 2). We find that
classification between “Affected Status” categories of
Autism and the middle-severity categories of NOA and BS
(together denoted B-ASD) leads to much lower UAR of
78 % (p < 0.01). Classification of the ADI-R two-class
diagnosis (which includes the Not-Met group with the
middle-severity categories) produces a significantly lower
89 % UAR (p <0.01). These findings support our
hypothesis that classification without the more-confusable,
central diagnostic categories is much simpler.

Next we evaluate the predictive power of the proposed
seven items versus all items. We observe no statistically
significant differences in performance between the pro-
posed items and the full item-set in the AGRE data
(p > 0.63). This could indicate that the proposed seven
items captured much of the variance in the AGRE data (on
which they were selected through training); however, they
may not generalize to other data. When classifying ADI-R
diagnosis in the BID data, performance is 80 % UAR with
the proposed seven items, which is significantly lower than
the 87 % UAR when including all items as features

(»p < 0.01). Since the proposed seven items were signifi-
cantly outperformed in this independent dataset (including
the middle diagnostic categories), our hypothesis that the
proposed seven items do not generalize is supported.

Discussion of Our Experiments with ADI Data

Our experiments provide empirical support that excluding
the middle diagnostic category makes predicting ADI-R-
based diagnosis from ADI-R codes a trivial task. These
experiments also show that the seven codes (as inputs to
the ADTree classifier) do not produce robust classification
performance in an independent dataset. These findings
highlight major shortcomings of the results and corre-
sponding claims found in Wall et al. (2012b).

Discussion

Several lessons can be learned from a critical analysis of
the results reported by Wall et al. (2012a, b). These studies
were a laudable attempt to simplify administration of a
complex and time-intensive psychological diagnostic
instrument using machine learning. However, these efforts
underscore the importance of accounting for details at both
conceptual and methodological levels when applying
machine learning. The following suggestions are offered as
general best-practice guidelines for translational studies at
the intersection of computational science and behavioral
science based on our failure to reproduce results from Wall
et al. (2012a, b) in larger and more balanced data sets.
First, it is essential for computational researchers to
understand the underpinnings of the target domain they are
working in. When engineering methods are developed in
isolation and are applied in a new domain, there is great
potential for errors in interpretation. For instance, knowl-
edge about the psychometric design and implementation of
the ADOS reveals that shortening its administration
through reducing the number of codes in the algorithm is
not a valid or feasible approach. Similarly, emerging
machine learning methods should not be applied off-the-
shelf by scientific and clinical researchers unless they are
well-versed in the underlying assumptions that come with
the algorithms. For instance, if a researcher does not take
care in the manner in which they divide the data for cross-
validation, classification performance can be artificially
inflated. More specifically, if the same subject appears in
both training and testing data, performance can increase
dramatically due to dependence between samples.
Accounting for the concerns raised in this paper is an
opportunity for fruitful education, training, and collabora-
tion between clinical and computational researchers. In the
age of interdisciplinary research, collaborative science
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needs researchers who have in-depth or at least significant
working knowledge in multiple domains to both conduct
and adequately peer-review reliable and valid science.
Specifically, computer scientists working in autism should
be well versed in the autism literature, and autism
researchers using machine learning should be confident in
their understanding of these methodologies. Cross-fertil-
ization of this sort holds great potential for translational
possibilities in ASD research.

Limitations

The data used in our experiments is limited because it does
not equally represent certain sub-populations. Specifically,
the AGRE data contains few Non-ASD subjects; and the
BID data, while more balanced, is far more representative
of the Autism category. An ideal database would contain
thousands of samples from all diagnostic categories col-
lected from independent clinical groups. Also, we did not
test generalizability of performance across databases; but
given that our assertions were supported within databases,
this seemed unnecessary at this time.

Conclusions

Computational methodologies, including machine learning,
are powerful tools for understanding data, but with their
immense promise come potential pitfalls. Problem formu-
lation and interpretation should be made in concert with
researchers who are experts in the applied tools. This is a
notable issue when conducting interdisciplinary research,
where the researcher should be knowledgeable about all
relevant aspects of a study in addition to possessing sufficient
computational abilities. Specifically, issues in conceptual
problem formation, methodological implementation, and
interpretation are demonstrated in Wall et al. (2012a, b). In
both cases, while the analytics offer tantalizing conclusions,
we demonstrated empirically using larger and more balanced
datasets that the authors’ claims of reducing diagnostic times
while maintaining accuracy are not reproducible.

In the future, we will consider more complex computa-
tional methodologies to study multiple-annotation, multiple-
code, and multiple-instrument fusion, as well as methods for
longitudinal tracking of coded behavior (Audhkhasi and
Narayanan 2013). We also wish to harness advances in
Behavioral Signal Processing (BSP) methodologies (e.g.,
Black et al. 2013; Bone et al. 2012, 2013, 2014; Narayanan
and Georgiou 2013) to create objective dimensional
behavior ratings of autistic symptomatology. BSP pursues
methods to quantify qualitatively-characterized behavioral
constructs based on low-level observed behavioral cues,
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contributing to the emerging broad realm of Computational
Behavioral Science (CBS; Rehg et al. 2013; Rehg et al.
2014). Unlike the application of machine learning to
already-coded behavioral data, this approach has the
potential to augment human knowledge with objective
descriptors from time-synchronized video, audio, physio-
logical, and physical activity data capture.

Autism nosology, although investigated for 70 years, is
at a critical moment in which the field requires more detailed
characterization of core ASD components (social-commu-
nication, restricted/repetitive behaviors) for clinical reasons
(e.g., personalized intervention) and neurobiological rea-
sons (i.e., support finding neurobiological -etiology).
Researchers will need efficient, reliable, and valid quanti-
tative, dimensional measures that can help stratify the dis-
order (Lord and Jones 2012). Lai et al. (2013) generated a
list of desired behavioral specifiers toward identification of
subgroups in autism, offering one potential direction for
bringing computational methods to bear. Collaboration
between computational and behavioral scientists holds
immense potential for advancing knowledge of the highly
complex condition of ASD, and in so doing underscores the
importance of conducting research that attains the highest
standards of quality, reliability, and validity.
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Appendix 1: Additional Methodological Details

Additional Methodological Details for ADOS Module 1
Data Experiments

The AGRE and BID ADOS Module 1 data demographics
are provided in Table 3 for the experiments shown in
Table 1 and Fig. 3. For the BID data, BCE diagnosis is also
available, although we do not utilize it in this paper.

To replicate the Wall et al. (2012a) proposed 8-code
selection as in Table 1, Weka’s ADTree classifier was
used. In this case, the algorithm was allowed to tune itself
to the given training data, but was limited to making rules
using only the proposed 8 codes. Wall et al. (2012a) did not
specify whether the code scores were first re-mapped as in
the ADOS algorithm (e.g., 3 is mapped to 2). We chose to
re-map because: (1) from the tree-diagram provided by
Wall et al. (2012a) it appears the codes were re-mapped;
and (2) codes were re-mapped first in similar experiments
by Wall et al. (2012b). Additionally, we noticed the
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Table 3 Combined table of demographic information for
experiments

Al. ADOS Mod. 1 A2. ADI-R

AGRE BID AGRE BID
# Sessions 984 1,033 1,169 680
Mean age (years) 6.76 4.95 9.01 9.24
Stdv. age (years) 3.11 3.45 3.02 3.01
Fraction female 0.22 0.23 0.23 0.24
ADOS: autism 942 858 - -
ADOS: autism spectrum 30 73 - -
ADOS: below cutoffs 12 102 - -
ADI-R: autism - - 1,027 462
ADI-R: non-autism - - 142 218
AffS: autism - - 1027 -
AffS: not quite autism - - 19 -
AffS: broad spectrum - - 42 -
AffS: not-met - - 81 -
BCE: autism - 780 - 362
BCE: non-autism ASD - 96 - 146
BCE: non-ASD DD - 82 - 165
BCE: TD - 22 - 2
BCE: missing - 53 - 5

Al: ADOS Module 1 data (AGRE and BID) for experiments in
Table 1 and Fig. 3

A2: ADI-R Data (AGRE and BID) for experiments in Table 2

AffS: AGRE “Affected Status”, BCE best-estimate clinical diagnosis,
DD developmental disorder, 7D typical development

selected codes did not match the proposed 8 regardless of
code re-mapping or not.

Classification performance of ADOS diagnosis with the
ADTree was evaluated (Fig. 3). Tenfold cross-validation
was used. Three variations of input feature sets are con-
sidered. (1) All 29—all 29 codes are included, as was done
in Wall et al. (2012a). (2) Proposed 8—only the 8 codes
proposed in Wall et al. (2012a) are input. (3) Remaining 21
—the remaining 21 of 29 codes not in the Proposed 8 are
used for classification.

The performance metric is unweighted average recall
(UAR), the mean of sensitivity and specificity. Many
machine learning algorithms optimize for accuracy—also
known as weighted average recall (WAR), since it is a
weighted summation of sensitivity and specificity, depen-
dent on the class priors—or an approximation thereof. One
option for directly optimizing UAR is to balance classes
through upsampling or downsampling (Rosenberg 2012).
Since the ADOS Autism class was much larger than the
ADOS Non-Spectrum class, the ADOS Autism class can be
downsampled or the ADOS Non-Spectrum class can be
upsampled to optimize for UAR. In our experiments, we
chose the latter. Upsampling was performed by adding

exact copies of samples from the minority class only within
the training data subset, in order to keep training and
testing data independent. While other statistical methods
exist for upsampling, they rely on certain assumptions
about the data. For example, when randomly sampling
from individual code scores to generate the entire set of
scores for a simulated instance, it is possible to generate a
set of scores that is very unlikely or impossible to occur in
the real-world. Rather than making such assumptions, we
upsampled whole observed data instances from the training
data.

Class imbalance is also observed for the ADOS ASD
(ADOS Autism and ADOS Autism Spectrum) versus ADOS
Non-Spectrum experiments. The ADOS Autism class has
many more samples in the AGRE and BID data than the
ADOS Autism Spectrum class. In order to show a repre-
sentative effect from the middle, more-subtle ADOS Aut-
ism Spectrum class, the ADOS Autism class was first
randomly downsampled during training to be equal in size
to the ADOS Autism Spectrum class. Then, the ADOS Non-
Spectrum class was upsampled to be the same size as the
new ADOS ASD class (as was done previously in the
Autism/Non-Spectrum) experiments.

Additional Methodological Details for ADI-R Data
Experiments

Data demographics for the ADI-R experiments are pro-
vided in Table 3. Code re-mapping was performed as in
Wall et al. (2012b); in particular, 3 was mapped to 2, and 7
and 8 were mapped to O (except for the Onset Age in
Hindsight item, which has acceptable values from 0 to 6).
Tenfold cross-validation was performed. The upsampling
and downsampling for ADI-R diagnosis experiments mir-
rors those for ADOS diagnosis experiments described in
“Additional Methodological Details for ADOS Module 1
Data Experiments” section. In particular, when performing
classification with 2-groups, the minority class was up-
sampled. For the case of Affected Status, categories of Not
Quite Autism (NQA) and Broad Spectrum (BS) were first
combined into a Broad-ASD (B-ASD) category; the
Affected Status category was slightly larger, so it was
downsampled to the size of the B-ASD category; then, the
minority ADI-R Non-Autism (B-ASD + Not-Met) class
was upsampled to be of equal size to the ADI-R Autism
group during training.

Significance Testing for Unweighted Average Recall
UAR is increasingly popular in the machine learning lit-
erature for tasks with unbalanced data in which the recall of

all classes are equally important. However, no established
technique exists for computing statistical significance.
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Some researchers have used the binomial proportions test,
as is done with accuracy, although this is not entirely valid.
Accuracy is a weighted average of individual class recalls,
weighted by the corresponding class prior. UAR is an
unweighted average of individual recalls. Statistical tests
exist for accuracy, sensitivity, and specificity; but no
established test yet exists for UAR.

We propose using a slightly modified version of the
exact binomial proportion test—we use the exact test since
the data are not always sufficiently large for a normal
approximation. Since UAR is an unweighted average of
individual recalls, it is equally influenced by the recall of
either class. The recall of a class with very few samples
(e.g., 12) can vary much more than recall of the majority
class (e.g., 942); notably, the machine learning algorithm
does not typically consider class-size when optimizing for
UAR. As such, the minor modification we made was to
reduce the sample size N from 954 (12 + 942) to some-
thing smaller—in particular, N_eff (effective N). We set
N_eff to twice the size (since there are two classes) of the
minority class. In our example, N_eff is consequently 24,
compared to the original N of 954. The negative implica-
tion is that some of the statistical power from the confi-
dence in recall of the majority class is discarded; but the
benefit is that the statistical power in the minority-class
recall is not grossly exaggerated. Thus, this test is con-
servative, and is less likely to create false-positives.

Appendix 2: ADOS Module 1 Behavioral Codes

See Table 4.

Table 4 List of the ADOS Module 1 behavioral codes

Code category Code Code title
label
Communication Al Overall level of non-echoed
language
A2 Frequency of vocalization
directed to others
A3 Intonation of vocalizations and
verbalizations
A4 Immediate echolalia

A5 Stereotyped/idiosyncratic use of
words or phrases

A6 Use of others’ body to
communicate

A7 Pointing
A8 Gestures
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Table 4 continued

Code category Code Code title
label
Reciprocal social B1 Unusual eye contact
Interaction B2 Responsive social smile
B3 Facial expressions directed to
others
B4 Integration of gaze and other
behaviors during social
overtures
B5 Shared enjoyment in interaction
B6 Response to name

B7 Requesting
B8 Giving
B9 Showing

B10 Spontaneous initiation of joint
attention

B11 Response to joint attention
B12 Quality of social overtures
Play Cl
C2 Imagination/creativity

Functional play with objects

Stereotyped behaviors D1
and restricted interests

Unusual sensory interesting in
play material/person

D2 Hand and finger and other
complex mannerisms

D3 Self-injurious behavior
D4 Unusually repetitive interests or
stereotyped behaviors
Other abnormal El Overactivity
behaviors E2 Tantrums, aggression, negative or
disruptive behavior
E3 Anxiety

Appendix 3: Additional Performance Measures

Here we present additional performance measures from our
classification experiments with the following disclaimer:
individual results should not be contrasted with metrics
other than UAR, the mean of sensitivity and specificity,
because the machine learning algorithms only optimizes
for UAR in our experiments, and thus are not concerned
with measures like sensitivity and specificity individually.
That is, an algorithm is only concerned with reaching a
peak in UAR. The other statistical measures may be
viewed as a random realization that achieves the observed
UAR; thus, comparison of, for example, sensitivity
between individual results may be inappropriate.

We understand that analysis of each of these measures is
standard in diagnostic research. However, our experimental
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Table 5 Results for classifying Data Diagnosis Items UAR Sens. Spec. PPV NPV Acc.
ADOS categories using ADOS
items AGRE Aut/N All 29 96 99 92 100 65 99
Proposed 8 87 99 75 100 47 99
Remaining 21 95 98 92 100 41 98
ASD/N All 29 82 88 75 95 56 86
Proposed 8 82 82 83 96 48 82
Diagnoses: Aut, ADOS Autism; Remaining 21 83 80 86 96 50 81
ASD, ADOS Autism Spectrum BID Aut/N All 29 99 99 98 100 93 99
or Autism; N, ADOS Proposed 8 94 9 91 99 73 96
I:ﬁ“gf’zﬁr;;n}ggg“ﬁsdef{e ' Remaining 21 95 97 92 9 79 97
codes. Proposed 8, only the 8 ASD/N All 29 90 90 90 93 86 90
codes proposed in Wall et al. Proposed 8 83 81 84 88 75 82
(2012a); Remaining 21, the Remaining 21 87 88 87 91 83 88
remaining 21 of 29 codes
Table 6 Results for classifying “Affected Status” and ADI-R categories using ADI-R items
Data Items Affected Status UAR Sens. Spec. PPV NPV Acc.
AGRE All Aut/N-M 99 100 99 100 99 100
Aut/B-ASD + N-M 88 94 83 98 62 93
Aut/B-ASD 79 90 69 98 29 89
Proposed 7 Aut/N-M 99 100 99 100 94 99
Aut/B-ASD + N-M 89 94 84 98 63 93
Aut/B-ASD 78 88 67 98 25 87
BID All Aut/B-ASD + N-M 87 84 90 79 92 88
Proposed 7 Aut/B-ASD + N-M 80 68 93 32 86 85

Diagnoses: Aut, ADI-R Autism; B-ASD, “Affected Status” categories of not quite autism (NQA) and broad spectrum; Not-Met (N-M),
“Affected Status” not-met category. B-ASD and not-met together comprise the ADI-R non-autism diagnosis

results stand primarily as empirical support of certain
methodological flaws present in the experiments of Wall
et al. (2012a, b); as such, we compare results using the
measure that the machine learning algorithm optimizes,
UAR (technically it optimizes accuracy, but it effectively
optimizes UAR since we balance classes during training.)
We also note that analyzing true diagnostic validity of this
approach would be further complicated by the fact that the
ADOS has its own diagnostic error.

The following tables present six measures: unweighted
average recall (UAR); sensitivity; specificity; positive
predictive value (PPV); negative predictive value (NPV);
and accuracy. Expanded results for the ADOS (c.f., Fig. 3)
are presented in Table 5, while expanded results for the
ADI-R (c.f., Table 2) are displayed in Table 6.
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