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Abstract Machine learning has immense potential to

enhance diagnostic and intervention research in the

behavioral sciences, and may be especially useful in

investigations involving the highly prevalent and hetero-

geneous syndrome of autism spectrum disorder. However,

use of machine learning in the absence of clinical domain

expertise can be tenuous and lead to misinformed conclu-

sions. To illustrate this concern, the current paper critically

evaluates and attempts to reproduce results from two

studies (Wall et al. in Transl Psychiatry 2(4):e100, 2012a;

PloS One 7(8), 2012b) that claim to drastically reduce time

to diagnose autism using machine learning. Our failure to

generate comparable findings to those reported by Wall and

colleagues using larger and more balanced data under-

scores several conceptual and methodological problems

associated with these studies. We conclude with proposed

best-practices when using machine learning in autism

research, and highlight some especially promising areas for

collaborative work at the intersection of computational and

behavioral science.
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Introduction

The landscape of psychological and psychiatric research is

increasingly interdisciplinary, where novel insights often

stem from diverse expertise. The integrative study of aut-

ism spectrum disorder (ASD) represents an exemplar for

translational research of a psychiatric disorder (Amaral

et al. 2011). Theoretical and empirical contributions from

clinical, genetic, neuroscientific, and animal studies have

the potential to not only elucidate the causes of ASD, but

also to identify mechanisms for early diagnosis and indi-

vidualized interventions (Dawson et al. 2002; Levitt and

Campbell 2009).

In recent years, advanced computational and engineer-

ing methodologies have been employed to meet the needs

of cross-disciplinary applications in psychology and psy-

chiatry. For example, machine learning methods have

demonstrated success in areas such as bioinformatics

(Baldi 2001), affective computing (Picard 2000), behav-

ioral informatics (Black et al. 2013; Narayanan & Georgiou

2013), and medical diagnosis (Wei et al. 2005). Machine

learning—which builds upon sophisticated mathematical

learning, statistical estimation, and information theories—

is of particular interest to researchers as a generally

applicable computational framework for automatically
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discovering useful patterns in large amounts of data. A

learned data representation can, for instance, provide

insights into the processes that generated the data, help

visualize data to assist humans in clinical decision making,

and predict a target variable from a set of input features

(i.e., classification). Given these appealing affordances, it is

not surprising that the use of computational and engineer-

ing methodologies is rapidly evolving in the study of

neurocognitive disorders (Bone et al. 2014; Chaspari et al.

2013; Hu and Steinberg 2009; Ye et al. 2012).

One apparent utility of machine learning in autism

research is to create an efficient and robust diagnostic

algorithm based on human coded behaviors from diag-

nostic instruments such as the Autism Diagnostic Inter-

view-Revised (ADI-R; Lord et al. 1994) and the Autism

Diagnostic Observation Schedule (ADOS; Gotham et al.

2007; Lord et al. 2000). A certain degree of hand-con-

struction by experts (supported by rigorous statistical

analysis) is involved in creating these diagnostic instru-

ments, so it is reasonable to believe that objective machine

learning methods may provide more reliable performance

and/or increased efficiency by reducing redundancy within

an instrument. More rapid diagnostic procedures could

facilitate acquisition of the very large cohorts (over 10,000

subjects; Abrahams and Geschwind 2010) needed to reli-

ably uncover the complex neurogenic etiology of ASD.

Researchers have sought rapid categorical assessments of

ASD (Constantino et al. 2007; Lee et al. 2010), although

often at the cost of reduced sensitivity/specificity, or pop-

ulation sampling biased towards more severely impacted

individuals. Machine learning seems a viable option for

accelerating these diagnostic efforts by identifying essen-

tial nosological components; eliminating redundancy but

maintaining accuracy. However, as we will discuss and

demonstrate empirically in this paper, the task is not as

simple as it may initially appear.

While powerful, machine learning is prone to misinter-

pretation, especially when utilized in interdisciplinary

studies (not unlike other statistical techniques). The

application of engineering methods and interpretation of

the results they generate requires a thorough understanding

of both computational and clinical content domains. It is

essential that a computational researcher consider the

sources and properties of the data when applying machine

learning techniques; the manner in which data were elic-

ited/collected and what purposes they are intended to serve

are of paramount importance to ensure that interpretation

of results are accurate, unbiased, and not overstated.

Focusing solely on data processing, but ignoring context,

can produce misleading results and conclusions.

Conversely, the application of computational methods by

researchers outside machine learning communities can be a

precarious situation because there are numerous ways to

misuse algorithms and misjudge their results.1 As such, it is

crucial that computational and behavioral researchers col-

laborate in these endeavors, with each community learning

as much as possible about the other’s domain to relay best

practices, provide context, and assist in interpreting results.

This approach to inquiry is especially vital in an area with

such profound impact and public health significance as

mental health disorders research; if an algorithm is widely

purported to improve diagnostics or aid intervention, the

claim comes with tremendous social ramifications and

responsibility.

The current paper identifies several subtle but important

pitfalls when incorporating machine learning techniques in

autism diagnostics, leading to proposed best-practices for

future applications of machine learning in autism research.

The impetus for this contribution stems from two published

autism studies which sought to use machine learning

techniques for very rapid (several minutes) assessment of

ASD using the ADOS (Wall et al. 2012a) and the ADI-R

(Wall et al. 2012b). In addition to critically evaluating

these experimental contributions, we attempt to reproduce

the findings of Wall and colleagues using a larger, more

balanced corpus of ADOS and ADI-R data, while

accounting for potential sources of error that we will argue,

if not addressed, produce misleading and non-replicable

results. We also recommend a classification performance

metric called unweighted average recall that is better suited

for data with unbalanced classes than the more commonly

used measure of performance, accuracy. Finally, we close

by briefly outlining applications of machine learning and

signal processing that hold promise to advance our

understanding of autism diagnosis and intervention

research.

Wall et al. (2012a) Experiments and Critique

The experiments of Wall et al. (2012a) claim to shorten the

observation-based coding of the ADOS in an effort to

provide more time-efficient diagnoses while maintaining

validity. Our critical analysis of this study begins with a

brief overview of the ADOS instrument, followed by a

description of the data used, their experimental claims, and

our critique citing conceptual and methodological issues in

the approach.2

1 For instance, model over-fitting can occur when training data is

included in testing sets, which can inflate confidence in a result that is

not likely to replicate in independent samples. Cross-validation is a

common solution.
2 The work of Wall et al. (2012a) has been extended in Duda et al.

(2014). While some methodological issues are resolved, primary

conceptual issues remain.
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Autism Diagnostic Observation Schedule

The ADOS is a widely used, standardized assessment for

diagnosing ASD that consists of 30–45 min of semi-

structured interaction with a trained administrator to elicit

and code behaviors relating to social interaction, commu-

nication, play, and imaginative use of materials (Lord et al.

2000). The ADOS consists of four distinct Modules that

vary depending on an individual’s age and verbal abilities.

We focus on Module 1 in this paper, as that was the module

used in the Wall et al. (2012a) study under examination. It

is designed for pre-verbal children and thus is most often

used for early, initial ASD diagnosis. Module 1 incorpo-

rates 29 behavioral codes and 10 subtasks/activities. The

ADOS algorithms were designed in an effort to map

standardized behavioral observations to an ASD diagnosis.

Creators of the instrument judiciously fused their collective

and extensive clinical knowledge, Diagnostic and Statisti-

cal Manual of Mental Disorders, Fourth Edition (DSM-IV;

American Psychiatric Association 2000) criteria, and sta-

tistical analytics to handcraft the algorithm (Fig. 1). The

resulting algorithm was tested against best-estimate clinical

(BEC) diagnosis that takes into consideration all the pre-

viously mentioned sources of information. The algorithm

begins with 29 ADOS codes scored on varying integer

scales from 0 to 3, with scores of 7 or 8 reserved for

behaviors not assessable during test administration. As a

pre-processing step, scores of 3 are mapped to 2, and all

scores of 7 and 8 are mapped to 0 (i.e., non-score-able) for

validity and reliability purposes (Lord et al. 2000). Next,

the most relevant and reliable codes indicative of a BEC

ASD diagnosis are selected. Of the 29 Module 1 codes, 12

are utilized in the original algorithm (Lord et al. 2000) and

14 in the revised algorithms (Gotham et al. 2007). The

revised algorithms3 select separate sets of 14 codes

depending on the verbal proficiency of the child. The

remaining steps of the ADOS algorithm are comprised of

summation and thresholding to classify differences

between diagnostic groups. Specifically, all modified

scores from the 14 selected codes are summed to create a

combined Social Affect and Restricted, Repetitive Behav-

ior Total (SA ? RRB). Finally, the SA ? RRB Total is

used to classify three groups using two sets of thresholds.

The three ADOS diagnostic groups are: Autism, Autism

Spectrum, and Non-Spectrum (or Below Cutoffs).

ADOS Data Used in Wall et al. (2012a)

The training data used in Wall et al. (2012a) consisted

primarily4 of ADOS Module 1 administrations from the

Autism Genetics Resource Exchange (AGRE; Geschwind

et al. 2001) database. The AGRE data (at that time,

download meta-data unknown) contained 612 Autism

subjects (M = 6.6 year, SD = 4.1 year) and 11 Non-

spectrum subjects (M = 4.6 year, SD = 3.9 year); the

central Autism Spectrum class contained in the ADOS was

omitted. These numbers are post exclusion-criteria; in

particular, test administrations missing 50 % or more of

ADOS scores and subjects not in the age range of

2–17 years were excluded.

Critical Analysis of Wall et al. (2012a) ADOS Experiments

Wall et al. (2012a) sought to shorten the ADOS by using

machine learning techniques to automatically identify an

ADOS diagnosis (outcome) using the fewest number of

human expert-derived ADOS codes (features). The exper-

imental setup is illustrated in Fig. 2. From a systems’

point-of-view, this approach is an attempt at dimensionality

reduction, one of the many plausible goals for computa-

tional analysis in ASD. The authors used 16 tree-based

classifiers in the Weka toolkit of machine learning algo-

rithms (Hall et al. 2009) with default parameter settings.5

They found that two classifiers produced the highest

accuracy, and thus selected the one that used the fewest

number of codes: Alternating-Decision Tree (ADTree;

Freund and Mason 1999). Again, they omitted the central

ADOS Autism Spectrum class due to insufficient sample

size and instead conducted the simpler task of separating

Fig. 1 ADOS revised Module 1

algorithm (Gotham et al. 2007)

block-diagram

3 Analyses we conducted in this paper use these revised ADOS

algorithms.

4 Apart from 4 Non-Spectrum subjects from the Boston Autism

Consortium database.
5 Proper application of machine learning usually entails optimizing

parameter settings for a chosen classifier. The peak performance of a

classifier for a given dataset cannot be achieved without this step.

Since optimizing parameter settings for maximal classification

performance can lead to over-fitting, an independent test set is

required; often a third set called the Development set is used or

another layer of cross-validation is performed. In our experiments, we

use default parameter settings in order to most closely replicate the

methodology employed by Wall et al. (2012a).
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the more severe ADOS Autism cases from the ADOS Non-

ASD cases. Eight codes were found to produce 100 %

accuracy in the training set using cross-validation. Testing

on the remaining data revealed greater than 99.7 % recall6

(sensitivity) classifying children with an ADOS Autism

diagnosis and 94.4 % recall (specificity) detecting an

ADOS Non-Spectrum diagnosis in 1,000 simulated controls

(97 % unweighted average recall, the mean of sensitivity

and specificity)—simulated controls were generated by

randomly sampling scores from ADOS Non-spectrum

cases in the training data.

While these classification results appear very promising,

they need to be considered carefully within the context of

how the ADOS was designed in order to be judged reliable

and valid. As detailed below, the experimental setup ofWall

et al. (2012a) suffers from several conceptual problems

relating to the psychometric design and diagnostic principles

of the ADOS, and several methodological issues relating to

incorrect application of machine learning and data set limi-

tations. Collectively, these issues bring into question infer-

ences drawn from the results. We address the conceptual

issues first, followed by the methodological issues.

Conceptual Problems of Wall et al. (2012a) Study

There are at least four conceptual problems with the study.

First and foremost, Wall et al. (2012a) assert that a reduced

set of ADOS codes—those utilized as inputs to the trained

ADTree classifier—reduce the time required to determine

an autism diagnosis ‘‘to minutes.’’ However, the ADOS

must be fully administered for reliable and valid ADOS

codes to be scored. More precisely, when ADOS scores

were initially subjected to reliability analyses, coders were

allowed to score any behavior in any subtask; meaning

ADOS coding reliability is only established when admin-

istering all subtasks. Therefore, the approach by Wall et al.

(2012a) may reduce ADOS codes, but it does not reduce

tasks, i.e., administration time.

Second, in the absence of any established theoretical or

empirical support, the authors implicitly assume incorrectly

that ADOS codes are valid outside the context of a full

ADOS administration. ADOS codes (input data to the

machine learning algorithm) are currently only considered

reliable and valid when elicited by a trained administrator

using standardized materials during semi-structured social

presses in the ADOS context. One of the primary assertions

of Wall et al. (2012a) is that their algorithms can enable

out-of-clinic screening; specifically, in-home (and thus

more affordable, they claim) procedures for diagnosis. Yet,

there is no empirical support that data collected from

unstructured interactions by non-experts in non-standard-

ized settings is sufficient for valid ADOS scoring with their

proposed model. Validation of an instrument that operates

in this scenario requires independent large-scale clinical

studies.

Third, asmentioned briefly before, the study disregards the

crucial middle ADOS Autism spectrum class. Only ADOS

Autism (reserved for the most severe social-communicative

Fig. 2 Machine learning

approach to efficient ADOS

diagnosis employed by Wall

et al. (2012a)

6 Recall can be used interchangeably with either sensitivity or

specificity, which differ only in naming convention of the ‘‘true’’

class.
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impairments) and Non-spectrum diagnoses were used in

classification, neglecting the subtlest, more heterogeneous,

and most-difficult-to-identify Autism Spectrum diagnostic

category. One could argue that classifying ADOS diagnosis

from ADOS codes is trivial with polarized categories. Thus,

the algorithm performance reported by Wall et al. (2012a)

would be expected to drop significantly if this middle cate-

gory were included, and we evaluate this hypothesis in our

replication experiments described later in this paper.

Finally, Wall et al. (2012a) predicted ADOS diagnosis

rather than BCE. As mentioned previously, BCE incorpo-

rates other measures in addition to the ADOS to achieve

higher diagnostic validity, and should be considered the

true ‘‘gold-standard.’’ Since the ADOS is one component

towards a final diagnosis, any inaccuracy predicting ADOS

diagnosis compounds diagnostic error. A more logical

approach for Wall et al. (2012a) would have been to

classify BCE from ADOS scores directly (thereby creating

a new ‘‘ADOS algorithm’’), especially considering their

criticism of the ‘‘hand-selected’’ construction of the current

ADOS algorithms. However, as stated previously, this still

would not achieve the goal of reducing ADOS adminis-

tration time.

Methodological Problems of Wall et al. (2012a) Study

This study also suffers from a variety of methodological

issues that raise concerns about the reliability and validity

of the results obtained. First, the resulting classifier was not

validated on adequate data. The training data was severely

imbalanced, limiting statistical power. The validation (test)

data they used did not contain any ‘‘negative’’ instances,

that is, ADOS Non-spectrum samples. Thus, the algorithm

could not be validated for specificity on independent data.

To counter this data limitation, the authors simulated

‘‘test’’ samples using instances from the training data—the

second methodological problem. Training data were used

to learn feature distributions, and samples were simulated

by randomly sampling scores for each code individually.

Yet, this synthesized test data is merely a ‘‘noisy’’ version

of the training data, wherein the test set is not independent.

Third, we feel that Wall et al. (2012a) should have

pursued more rigorous evaluation of their results. That is, it

appears that no effort was made to evaluate the reliability

or validity of their results aside from peripheral reporting

of accuracy on the test data. For instance, the reliability of

the selected codes and resulting accuracy could have been

assessed using data sub-sampling (e.g., bootstrapping).

Since those analyses were not reported, questions left

unanswered include: Were different subsets of codes

selected within each cross-validation fold? Were the

selected eight codes a unique set in achieving the reported

performance? How robust are the results to variations in

parameter settings?

Wall et al. (2012b) Experiments and Critique

Wall et al. (2012b) also claim to reduce time to diagnose

autism using machine learning, although here they focus on

behavioral-based codes from the ADI-R. In presenting our

critical analysis of this study, the ADI-R is introduced briefly,

followed by a description of the data used in Wall et al.

(2012b), their experimental claims, and our critique, again

citing conceptual and methodological issues in the approach.

Autism Diagnostic Interview: Revised

The ADI-R is a validated parent-report measure contrib-

uting to BCE diagnosis of children with autism. The

interview is conducted by a trained clinician, contains 93

items, and typically takes 3 h to complete. The ADI-R

focuses on the areas of reciprocal social interaction; com-

munication and language; and restricted and repetitive,

stereotyped interests and behaviors. Questions in the

interview provide a high degree of granularity; for exam-

ple, questions in the Reciprocal Social Interaction category

query specific social cues such as inappropriate facial

expressions, use of other people’s bodies to communicate,

and appropriateness of social response. Each ADI-R

question is asked twice, once about current behavior, and

once about either ‘‘most abnormal 4–5 years’’ or ‘‘ever’’;

the algorithm uses the latter two time periods.

The ADI-R has an associated algorithm that generates

subtotal scores tapping its respective content areas;

wherein each subtotal has a threshold that must be met for a

diagnosis of Autism (much like the ADOS). If any cutoff is

not met, the subject is diagnosed as Non-Autism. Items are

given integer scores in the range 0–3, where a 0 indicates

the behavior was not currently present, and a 3 indicates

‘‘extreme severity’’ of the coded behavior. There are also

scores of 7–9 indicating non-score-able items. As with the

ADOS, scores of 3 are mapped to 2, and scores of 7–9 are

mapped to 0 before summation. In addition to meeting all

subtotal thresholds, onset of the disorder must have been

evident by 36 months of age. Separate cutoff scores exist

for verbal and non-verbal subjects.

ADI-R Data Used in Wall et al. (2012b)

The AGRE ADI-R data was exclusively used for training

in Wall et al. (2012b), however, the authors made a key

decision to use the ‘‘Affected Status’’ diagnosis from

AGRE rather than an ADI-R diagnosis. The ADI-R does

not have validated algorithms for the broad autism

J Autism Dev Disord (2015) 45:1121–1136 1125
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spectrum, and thus only contains Autism and Non-Autism

diagnoses. The ‘‘Affected Status’’ diagnosis (AGRE Pedi-

gree Algorithms 2013) is meant to categorize subjects

based solely on the ADI-R, although these are not diag-

noses ‘‘per se’’; additional categories are Not Quite Autism

(NQA) and Broad Spectrum (BS). AGRE states that NQA

represents individuals who narrowly missed reaching ADI-

R Autism criteria, and BS defines individuals who ‘‘show

patterns of impairment along the spectrum of pervasive

developmental disorders.’’ An additional class, Not-Met

(NM), is reserved for individuals who do not meet any of

the potential cutoffs for spectrum behavior. Affected Status

diagnoses of NQA, BS, and NM compose the ADI-R Non-

Autism category. The data distribution according to

Affected Status diagnosis was: 891 Autism subjects

(M = 8.1 year, SD = 4.4 year) and 75 Not-Met subjects

(M = 9.2 year, SD = 5.5 year).

Critical Analysis of Wall et al. (2012b) ADI-R Experiments

This study sought to shorten the ADI-R diagnostic instru-

ment through classification with ADI-R items, wherein the

selected classifier ideally learns a sparse transformation

(using a reduced set of items) from the ADI-R items to the

ADI-R diagnosis (Autism vs. Non-Autism)—or more

exactly, ‘‘Affected Status’’ diagnoses of Autism vs. Not-

Met. This experimental setup parallels that of Wall et al.

(2012a) that used the ADOS, with one major distinction:

certain ADI-R items are independently score-able, and thus

administration may be reducible, a point we will return to

at the end of our critique.

Wall et al. (2012b) used the AGRE dataset, which consists

primarily of children on the autism spectrum. Although the

ADI-R diagnosis contains two categories, the authors used

AGRE’s ‘‘Affected Status.’’ Again, Affected Status is a

4-category decision based on the ADI-R, created as an

ancillary severity measure for the AGRE corpus. Affected

Status divides ADI-R Non-Autism diagnosis into three sub-

categories.Wall et al. (2012b) chose to exclude the twomiddle

severity categories (NQA and BS)—thus, like Wall et al.

(2012a), comparing only the least and most severe cases. The

authors used 15 tree-based classifiers in theWeka toolkit (Hall

et al. 2009), finding the ADTree to perform best. They found

that only seven items were needed for a classifier to produce

100 % recall (sensitivity) classifying children with Autism,

98.7 % recall (specificity) in detecting Not-Met cases, and

99.9 % accuracy (there were more Autism instances). The

algorithmwas tested on two other databases (Simons Simplex

Collection and Boston Autism Consortium) that had a com-

bined 1,976 Autism instances and 17 Not-Met instances,

resulting in high sensitivity (99.7 %) but low specificity

(53 %). Specifically, Wall et al. (2012b) reported that when

classifying 17 ADI-R Non-Autism test subjects, 8 were

incorrect (i.e., they also received ADOS Autism Spectrum

diagnoses). While the reported results may seem impressive,

similar conceptual and methodological issues present in Wall

et al. (2012b) exist in this study that bring into question the

validity and reliability of the associated claims.

Conceptual Problems of Wall et al. (2012b) Study

Two primary conceptual issues are present in this study.

First, as mentioned before, the investigators excluded the

important middle-severity class, leaving only subjects with

high or low severity ASD symptoms according to the ADI-

R; thus, classification with ADI-R codes becomes much

simpler. We believe that inclusion of the middle severity

categories will severely and negatively impact performance

of this automated classifier, since those classes are the

easiest to confuse when estimating diagnoses from ADI-R

codes. Second, like Wall et al. (2012a), this study predicted

ADI-R diagnosis rather than BCE. As previously stated,

unless the machine learning diagnosis exactly matches

ADI-R diagnosis, error in classifying ADI-R diagnosis will

create further error in final diagnosis (decreasing the

validity of the ADI-R).

Methodological Problems of Wall et al. (2012b) Study

We identified three primary methodological problems with

this study. First, the results did not demonstrate generaliz-

ability between the datasets tested. Out of the 17 Not-Met

subjects in the test set, only 9 (53 %) were identified cor-

rectly, which is effectively chance performance. Addition-

ally, the authors did not validate the algorithm on adequate

data. That is, the validation (test) data contained only 17

Not-Met instances, which is less than 1 % of the entire test

data. This number is too small to reliably assess perfor-

mance. A second methodological issue is that of simulating

‘‘test’’ samples using cases from the training data. As we

asserted for the Wall et al. (2012a) experiment, simulating

the minority class (Not-Met) using the training data does not

produce an independent test set, bringing into question the

validity of the recall reported on the simulated samples.

Third, the authors did not evaluate feature reliability via

data subsampling (e.g., bootstrapping). Wall et al. (2012b)

reported that the ADTree classifier, when training on the

whole AGRE data, utilized seven items. However, the

algorithm could have selected other codes in each cross-

validation fold. The authors could have shown reliability of

those reported seven items within their data by presenting

(1) the percentage of time the codes were selected within

subsamples of the data, and/or (2) accuracy when the

algorithm was limited to only those seven items in each

cross-validation fold. Lastly, returning to the previous

point about the ADI-R being a good candidate measure for
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machine learning item reduction, it is surprising that Wall

et al. (2012b) did not administer the ADI-R with only a

reduced set of questions and test whether the shorter ver-

sion produced the same results as the full set of questions.

Methods

In addition to highlighting conceptual and methodological

concerns across these two studies, we conducted, and hence

report on, a set of experiments that attempt to reproduce the

findings of Wall et al. (2012a, b) using larger and more

balanced datasets. These experiments provide empirical

support for certain assertions in the preceding critiques. In

the following,we provide details about the experimental data

used in our experiments and specify better-practice technical

approaches for evaluating machine learning techniques.

Details of Diagnostic Data Used in Our Experiments

The experiments we conducted used subsets of two corpora

containing ADOS and ADI-R administration scores. Our

first corpus is AGRE, similar to Wall et al. (2012a, b);

however, our subset is larger (984 vs. 623 sessions) since it

was downloaded at a later date. The second corpus, which

we will refer to as Balanced Independent Dataset (BID), is

a combined research and clinical dataset, part of which was

utilized in experiments supporting the initial generation of

the ADOS and ADI-R algorithms (Gotham et al. 2007;

Lord et al. 2000).

There are two major differences between the corpora we

used and those used byWall et al. (2012a, b). First, the AGRE

data is muchmore biased towards ASD subjects than the BID

data. That is, there are very few non-ASD samples in the

AGRE data, while the BID data is better balanced (details

below). Since confidence in recall for a class with a small

number of samples is low, regardless of the overall size of the

data set, this more balanced dataset is preferable for machine

learning experiments. Second, the BID data contains BCE,

including categories of Typically-Developing (TD), Autism,

Non-Autism ASD, and Non-ASD Developmental Disorder.

BCE diagnosis was used to validate the ADOS and ADI-R

algorithms, and thus is a useful (and arguably the more valid)

target variable formachine learning experiments. Conversely,

AGRE contains no explicit BCE diagnosis. However, we do

not present any experiments targeting BCE in this article.

ADOS Data Used in Our Experiments

OurADOSexperiments are conducted individually onADOS

Module 1 administrations from AGRE data and BID data

(additional information is provided in ‘‘Appendix 1’’). We

downloaded theAGREdata onApril 6th, 2013and applied the

same exclusion criteria as Wall et al. (2012a). Our AGRE

subset contained 984 subjects: 942 Autism (M = 6.8 year,

SD = 3.1 year), 30 Autism Spectrum (M = 5.6 year,

SD = 3.9 year), and 12 Non-Spectrum (M = 4.8 year,

SD = 3.1 year). The BID Module 1 data subset contained

1,033 subjects: 858 Autism (M = 5.2 year, SD = 3.6 year),

73Autism Spectrum (M = 3.9 year, SD = 2.4 year), and 102

Non-Spectrum (M = 3.4 year, SD = 2.0 year). Importantly,

the BID data is more representative of the minority classes

(i.e., the AGRE data had only 12 Non-Spectrum subjects

compared to 102 in the BID data).

ADI-R Data Used in Our Experiments

Our ADI-R experiments are conducted on the AGRE ADI-

R data downloaded on April 6th, 2013 as well as the BID

ADI-R data (additional information is provided in

‘‘Appendix 1’’). Our download of the AGRE data con-

tained 1,169 subjects: 1,027 Autism (M = 8.9 year,

SD = 3.0 year), 19 NQA (M = 10.2 year, SD = 3.0 year),

42 BS (M = 9.4 year, SD = 3.5 year), and 81 Not-Met

(M = 9.4 year, SD = 3.1 year)—thus a total of 142 ADI-

R Non-Autism subjects. In our experiments, we combine

the latter three categories back into the original ADI-R

Non-Autism diagnosis for reasons we will detail later. The

BID data was more balanced, containing 680 subjects in

the following categories: 462 Autism (M = 9.2 year,

SD = 3.1 year) and 218 Non-Autism (M = 9.4 year,

SD = 2.9 year). Following the procedure of Wall et al.

(2012b), we exclude certain ADI-R items for classification

that, for example, were scored more-often-than-not with an

exception code or had hand-written answers; and we only

include subjects in the age range of 5–17 years.

Technical Approach

In the following we describe the classification methodol-

ogy and performance metrics employed in our experiments.

Classification Methodology

The classification experiments in Wall et al. (2012a, b)

utilized a number of machine learning techniques7 and

found that a common tree-based classifier, ADTree, per-

formed best. Therefore, we focus our experiments on AD-

Tree to make more direct comparisons between their

findings and ours. Generally speaking, a classifier takes as

input a set of features (e.g., ADOS code scores) and learns a

7 It is advisable to test multiple algorithmic approaches to achieve

optimal accuracy; however, since this increases potential for over-

fitting and consequently inflating results, an independent, held-out

dataset is valuable.
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mapping to an output (e.g., ADOS diagnosis). The ADTree

classifier learns a set of rules (decisions based on feature

values) from which a prediction is made, but the tree’s

structure need not incorporate all features (i.e., ADOS code

scores) available as input. Since the ADTree classifier does

not necessarily use all features, it can be considered to

perform feature selection (or reduction of the feature set).

This is the approach used by Wall et al. (2012a).

In our experiments, we limit the available input features to

the ADTree algorithm. For example, Wall et al. (2012a)

asserted that only eight codes were needed for replication of

theADOSalgorithm, sowe also limit theADTree to use only

those eight codes as features. Since we are performing

multiple experiments that were not conducted in Wall et al.

(2012a), we cannot copy the exact tree structure and feature

weights. Further, that tree was trained using the entire AGRE

dataset, and we are only testing on a portion of that data. As

such, we re-train the ADTree (building a new tree structure

and assigning new feature weights) within each training

layer of cross-validation (detailed below), but only allow the

algorithm to select certain features. This re-training frame-

work allows the proposed approach a better chance of suc-

ceeding since it is being re-configured to the characteristics

of a new database. We also perform an experiment with the

remaining 21 codes. Some readers may be concerned that

this is an unfair comparison to the proposed eight codes since

there are more degrees of freedom. However, we argue that

this is not a serious concern because: (1) we use cross-vali-

dation, which is intended to prevent over-fitting; (2) not all

codes in the ADOS are equally informative of ADOS diag-

nosis; and (3) most importantly, the conclusion from Wall

et al. (2012a) is that the proposed eight codes can sufficiently

explain the ADOS, having removed redundant information.

Thus, the remaining 21 codes provide insight into the

information available in the ‘‘redundant’’ code set.

In order to test an algorithm’s classification performance

on unseen data, a method known as cross-validation (CV;

Kohavi 1995) is used. In k-fold CV, the data is partitioned

into k-subsets. A portion of the data is reserved for testing

(prediction) and the remaining data is used for training the

model. The testing data is alternated (k times) until all data

have been predicted. Wall et al. (2012a, b) used tenfold CV

(90 % train/10 % test), so we also used tenfold CV in our

experiments. The major assumption in CV is that the data

samples used for training and for testing are independent.

Thus, we exclude multiple evaluations from the same

observation (e.g., ADOS administration) in order to reduce

dependence between data folds.

Classification Performance Metric

Accuracy (percentage correct) is a poor performance

metric when the distribution of samples among classes is

unbalanced since it emphasizes the majority class. Take,

for example, a classification between two groups, A

(positive) and B (negative), where Group A accounts for

90 % of the data. If a one-rule classifier is constructed that

always selects the majority class (A), the accuracy becomes

90 %, while the recall of classes A and B become 100 and

0 %, respectively. A common technique to address this

issue is to simultaneously observe measures like sensitivity

(e.g., Group A recall) and specificity (e.g., class B recall);

but a machine learning algorithm can optimize sensitivity

and specificity simultaneously. In our experiments we use a

measure called unweighted average recall (UAR; Schuller

et al. 2009), which is the mean of sensitivity (recall of

positive instances) and specificity (recall of negative

instances).8 We prefer UAR to accuracy—which was used

in Wall et al. (2012a, b)—as a classification metric because

it equally weights each class regardless of number of

subjects that populate them, and has become a preferred

metric in modern machine learning tasks with unbalanced

data (Schuller et al. 2009, 2011). Baseline (chance) UAR is

1/N, where N is the number of classes. In our pedagogical

example above, UAR is only 50 %, which is chance per-

formance. ‘‘Appendix 1’’ contains additional information

on statistical testing with UAR for the interested reader.

Readers may also be curious why statistical measures

such as true positive rate, false positive rate, sensitivity,

and specificity are not analyzed simultaneously. This is due

to several factors that jointly support analyzing UAR. First,

a machine learning algorithm must optimize a single

objective function. This means we should optimize for a

single metric (e.g., UAR or accuracy) or some combination

of measures (in the form of a linear or non-linear equation).

Second, analyses should primarily focus on the measure

being optimized. More specifically, since our experiments

effectively optimize UAR, no explicit constraints are

placed on sensitivity and specificity. An optimal solution

with respect to UAR may result in unbalanced sensitivity

versus specificity; however, this may be a random reali-

zation of possible models that achieve this UAR since the

algorithm is only concerned with optimizing UAR.

Therefore, it is not meaningful to perform independent

statistical tests on other measures when optimizing for

UAR. Finally, UAR is a good first indicator of the infor-

mation captured by a modeling approach, wherein further

experiments could be conducted depending on a research-

er’s goals. For example, if a researcher wants to place more

emphasis on sensitivity than specificity, the objective

function can be modified as such. Nevertheless, these

8 Note that sensitivity and specificity only differ in the naming

convention of the ‘‘true’’ or ‘‘positive’’ class, and thus the term recall

applies to any class.
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measures are included (along with additional discussion on

their suitability for interpretation) in ‘‘Appendix 3’’.

Results

Our critical analyses of the methods and results reported in

Wall et al. (2012a, b) reveal serious conceptual and

methodological implementation issues that call into ques-

tion the reliability and validity of their claims. As empirical

support for our critiques, we performed a set of experi-

ments attempting to classify ASD diagnosis using ADOS

and ADI-R item scores. In the following, we describe our

experiments with the ADOS and ADI-R along with results

we believe to be more valid.

Our Experimental Results with ADOS Data

The experiments in this section are conducted with ADOS

data in order to support our critique of Wall et al. (2012a),

wherein we replicate those experiments with a larger and

more balanced dataset.

Replicated Experiments with ADOS Data

Based on the results of Wall et al. (2012a), we targeted the

following question to guide our first experiment: Are the

proposed eight codes reproducible (i.e., selected) in a larger

and more balanced data set that includes the Autism

Spectrum class? Through performing classification with the

ADTree classifier in various data subsets, we look at the

features (codes) selected by the ADTree classifier. The

results (presented in Table 1) indicate that the proposed

eight codes are not, in fact, unique. In particular, even our

attempt at replication with the (updated) AGRE data pro-

duced very distinct results from the proposed eight codes:

only 5 of the 9 selected codes in our replication (from the

full 29) overlap. This finding raises concerns about

designing a simplified and generalizable instrument based

on a smaller set of derived codes. Additionally, little

overlap was observed when we included the (previously

excluded) ADOS Autism Spectrum class in the ASD group

and when evaluating in the BID data. The fact that the

selected codes changed considerably with even minor

variations in the data suggests that there is important

information in the remaining 21 codes and that the pro-

posed eight codes do not generalize.

To evaluate the information contained in the proposed

eight codes more directly, we carried out classification

experiments with cross-validation as in Wall et al. (2012a).

Results are displayed in Fig. 3. We find classification

performance is 87 % UAR when attempting replication

(ADOS Aut/Non-ASD classification in the AGRE data with

the ADTree classifier, while limiting the feature set to the

proposed eight codes), which is low compared to the

reported 100 % accuracy (and thus 100 % UAR) by Wall

et al. (2012a). Additionally, the remaining 21 codes pro-

duce 95 % UAR, and all 29 codes produce 96 % UAR.

Pair-wise statistical significance is difficult to achieve due

to the small size of the ADOS Non-ASD class in AGRE and

ceiling effects. Since the only difference between these two

experiments appears to be minor data variation (our AGRE

dataset is larger since it was downloaded at a later date and

we exclude the four Non-Spectrum subjects from the

Boston Autism Consortium database), these results suggest

the findings in Wall et al. (2012a) are not reproducible.

Higher statistical confidence is obtained for the fol-

lowing results with the more balanced BID dataset. Per-

formance of the proposed eight codes is 94 % UAR, while

the remaining 21 and all 29 produce 95 % UAR and 99 %

UAR, respectively. In this case, the performance of all 29

codes is significantly higher than the proposed eight codes

(p\ 0.05). Thus, it is clear that some independent

Table 1 Codes used in calculating/predicting ADOS diagnosis, including: the proposed 8 codes of Wall et al. (2012a), the original and revised

ADOS algorithms, and our replication with the ADTree classifier

ADOS Codes Overlap

A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 D1 D2 D3 D4 E1 E2 E3 #same #total

Proposed 8 Wall et al. (2012a), Aut/N 8 8

ADOS
Algorithm

v2000 5 12

v2007 no-words 5 14

v2007 some-words 5 14

Replication
Experiments

AGRE Aut/N (exact) 5 9

AGRE, ASD/N 3 7

BID, Aut/N 3 10

BID, ASD/N 4 10

The highlighted columns correspond to Wall’s proposed 8 codes. Code descriptions are provided in ‘‘Appendix 2’’

Diagnoses: Aut, ADOS Autism; ASD, ADOS Autism Spectrum or Autism; N, ADOS Non-Spectrum. ADOS Code Groups: A, Language and

Communication; B, Social Reciprocity; C, Play; D, Restricted and Repetitive Behaviors. Note that AGRE Aut/N primarily differs from the

experiment that produced the proposed 8 in that the AGRE data were downloaded at different dates
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information exists in the remaining 21 codes and that the

proposed 8 do not robustly produce optimal performance

across datasets. These findings point toward the power of

redundancy in the ADOS coding system. Redundancy is a

core design component of well-designed, reliable, and

valid psychometric instruments, and has allowed the

ADOS algorithm to be refined since its initial development.

Further, the most differentiating features vary with devel-

opmental age and other behavioral attributes. Given the

heterogeneous symptomatic display in ASD, these ‘‘lessor’’

features, so to speak, are likely needed to fully characterize

the spectrum.

Perhaps even more critical is the issue of excluding the

central ADOS Autism Spectrum class, which we suggest

leads to inflated accuracies and is of little value since it

does not reflect real-world clinical conditions. We vali-

dated this claim by examining the performance of this

approach when including the more subtle and ambiguous

ADOS Autism Spectrum samples, joining them with the

ADOS Autism samples to form a new ASD group (fol-

lowing DSM-V standards). We observe that two-class

classification performance drops significantly. The pro-

nounced drop when selecting from all 29 codes is 14 %

UAR (96–82 %; p = 0.19) in the AGRE data, and 9 %

UAR (99–90 %; p\ 0.01) in the BID data. The drop when

selecting from the proposed 8 codes in the BID data is

11 % UAR (94–83 %; p\ 0.01). Such large drops confirm

that excluding the middle class makes the approach by

Wall et al. (2012a) a significantly easier task than if it were

included. Lastly, in the BID data the full 29 code set sig-

nificantly outperformed the proposed 8 in the ASD/Non-

ASD task, yielding 90 % UAR compared to 83 % UAR

(p\ 0.05).

Discussion of Our Experiments with ADOS Data

Taken together, our results indicate that the proposed eight

codes do not produce replicable results and do not gener-

alize across datasets in terms of code selection or classifi-

cation performance. It should also be noted that given a

large enough dataset, only the ADOS algorithm would

achieve perfect accuracy at this task. Additionally, the

critical middle severity class is shown to be more confus-

able, yet it was ignored in Wall et al. (2012a). The best

classification performance of ASD/Non-ASD classes in BID

used all 29 codes and produced 90 % UAR. It is also

noteworthy that, by definition, the ADOS algorithm

achieves 100 % UAR in this task; so a classifier that only

achieves 90 % UAR compounds diagnostic error. Coupled

with the fact that clinician administration and family par-

ticipation time is not actually reduced with the approach

proposed by Wall et al. (2012a), this error in predicting

ADOS diagnosis is without any benefit.

Our Experimental Results with ADI-R Data

In this section, we support our critique of Wall et al.

(2012b) with experimental evidence through replicated

Fig. 3 Replicated experiments with ADOS codes: binary classifica-

tion performance (UAR; (sensitivity ? specificity)/2) for various

subsets of ADOS codes. Note that the ADOS algorithm achieves

100 % UAR on this task by definition. Also note that statistical

significance in the AGRE data requires a relatively large effect size

due to the small size of the ADOS Non-ASD class. Diagnoses: Aut,

ADOS Autism; ASD, ADOS Autism Spectrum or Autism; N, ADOS

Non-Spectrum. Feature sets: All 29, all 29 ADOS Module 1 codes.

Proposed 8, only the 8 codes proposed in Wall et al. (2012a);

Remaining 21, the remaining 21 of 29 codes. Significance levels: �

p\ 0.10; *p\ 0.05; and **p\ 0.01
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experiments. We began this experiment by asking if the

proposed seven ADI-R codes selected by Wall et al.

(2012b) are reliable and optimal (generalizable) in terms of

the accuracy they produce. Since our ADOS experiments

demonstrated that the selected codes vary depending on the

data used, we forgo those experiments with the ADI-R and

instead examine classification performance (with UAR)

using the ADTree classifier and tenfold cross-validation.

In our replication experiment we find results similar to

those reported by Wall et al. (2012b). In particular, using

only those seven items and classifying with the two

extreme categories, we reach 99 % UAR in the AGRE

data. However, as we suggested earlier, excluding more

severely affected cases receiving an ADI-R Non-Autism

diagnosis makes this classification problem much simpler.

We validate this claim by examining performance when

those with ‘‘Affected Status’’ classifications of NQA and BS

are included in the analysis (see Table 2). We find that

classification between ‘‘Affected Status’’ categories of

Autism and the middle-severity categories of NQA and BS

(together denoted B-ASD) leads to much lower UAR of

78 % (p\ 0.01). Classification of the ADI-R two-class

diagnosis (which includes the Not-Met group with the

middle-severity categories) produces a significantly lower

89 % UAR (p\ 0.01). These findings support our

hypothesis that classification without the more-confusable,

central diagnostic categories is much simpler.

Next we evaluate the predictive power of the proposed

seven items versus all items. We observe no statistically

significant differences in performance between the pro-

posed items and the full item-set in the AGRE data

(p[ 0.63). This could indicate that the proposed seven

items captured much of the variance in the AGRE data (on

which they were selected through training); however, they

may not generalize to other data. When classifying ADI-R

diagnosis in the BID data, performance is 80 % UAR with

the proposed seven items, which is significantly lower than

the 87 % UAR when including all items as features

(p\ 0.01). Since the proposed seven items were signifi-

cantly outperformed in this independent dataset (including

the middle diagnostic categories), our hypothesis that the

proposed seven items do not generalize is supported.

Discussion of Our Experiments with ADI Data

Our experiments provide empirical support that excluding

the middle diagnostic category makes predicting ADI-R-

based diagnosis from ADI-R codes a trivial task. These

experiments also show that the seven codes (as inputs to

the ADTree classifier) do not produce robust classification

performance in an independent dataset. These findings

highlight major shortcomings of the results and corre-

sponding claims found in Wall et al. (2012b).

Discussion

Several lessons can be learned from a critical analysis of

the results reported by Wall et al. (2012a, b). These studies

were a laudable attempt to simplify administration of a

complex and time-intensive psychological diagnostic

instrument using machine learning. However, these efforts

underscore the importance of accounting for details at both

conceptual and methodological levels when applying

machine learning. The following suggestions are offered as

general best-practice guidelines for translational studies at

the intersection of computational science and behavioral

science based on our failure to reproduce results from Wall

et al. (2012a, b) in larger and more balanced data sets.

First, it is essential for computational researchers to

understand the underpinnings of the target domain they are

working in. When engineering methods are developed in

isolation and are applied in a new domain, there is great

potential for errors in interpretation. For instance, knowl-

edge about the psychometric design and implementation of

the ADOS reveals that shortening its administration

through reducing the number of codes in the algorithm is

not a valid or feasible approach. Similarly, emerging

machine learning methods should not be applied off-the-

shelf by scientific and clinical researchers unless they are

well-versed in the underlying assumptions that come with

the algorithms. For instance, if a researcher does not take

care in the manner in which they divide the data for cross-

validation, classification performance can be artificially

inflated. More specifically, if the same subject appears in

both training and testing data, performance can increase

dramatically due to dependence between samples.

Accounting for the concerns raised in this paper is an

opportunity for fruitful education, training, and collabora-

tion between clinical and computational researchers. In the

age of interdisciplinary research, collaborative science

Table 2 UAR for classifying ‘‘Affected Status’’ and ADI-R

categories using ADI-R items

Items Affected Status AGRE BID

All Aut/N-M 99

Aut/B-ASD ? N-M 88 87

Aut/B-ASD 79

Proposed 7 Aut/N-M 99

Aut/B-ASD ? N-M 89 80

Aut/B-ASD 78

Diagnoses: Aut, ADI-R Autism; B-ASD, ‘‘Affected Status’’

categories of Not Quite Autism (NQA) and Broad Spectrum; Not-Met

(N-M), ‘‘Affected Status’’ Not-Met category. B-ASD and Not-Met

together comprise the ADI-R Non-Autism diagnosis
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needs researchers who have in-depth or at least significant

working knowledge in multiple domains to both conduct

and adequately peer-review reliable and valid science.

Specifically, computer scientists working in autism should

be well versed in the autism literature, and autism

researchers using machine learning should be confident in

their understanding of these methodologies. Cross-fertil-

ization of this sort holds great potential for translational

possibilities in ASD research.

Limitations

The data used in our experiments is limited because it does

not equally represent certain sub-populations. Specifically,

the AGRE data contains few Non-ASD subjects; and the

BID data, while more balanced, is far more representative

of the Autism category. An ideal database would contain

thousands of samples from all diagnostic categories col-

lected from independent clinical groups. Also, we did not

test generalizability of performance across databases; but

given that our assertions were supported within databases,

this seemed unnecessary at this time.

Conclusions

Computational methodologies, including machine learning,

are powerful tools for understanding data, but with their

immense promise come potential pitfalls. Problem formu-

lation and interpretation should be made in concert with

researchers who are experts in the applied tools. This is a

notable issue when conducting interdisciplinary research,

where the researcher should be knowledgeable about all

relevant aspects of a study in addition to possessing sufficient

computational abilities. Specifically, issues in conceptual

problem formation, methodological implementation, and

interpretation are demonstrated in Wall et al. (2012a, b). In

both cases, while the analytics offer tantalizing conclusions,

we demonstrated empirically using larger andmore balanced

datasets that the authors’ claims of reducing diagnostic times

while maintaining accuracy are not reproducible.

In the future, we will consider more complex computa-

tional methodologies to studymultiple-annotation, multiple-

code, and multiple-instrument fusion, as well as methods for

longitudinal tracking of coded behavior (Audhkhasi and

Narayanan 2013). We also wish to harness advances in

Behavioral Signal Processing (BSP) methodologies (e.g.,

Black et al. 2013; Bone et al. 2012, 2013, 2014; Narayanan

and Georgiou 2013) to create objective dimensional

behavior ratings of autistic symptomatology. BSP pursues

methods to quantify qualitatively-characterized behavioral

constructs based on low-level observed behavioral cues,

contributing to the emerging broad realm of Computational

Behavioral Science (CBS; Rehg et al. 2013; Rehg et al.

2014). Unlike the application of machine learning to

already-coded behavioral data, this approach has the

potential to augment human knowledge with objective

descriptors from time-synchronized video, audio, physio-

logical, and physical activity data capture.

Autism nosology, although investigated for 70 years, is

at a critical moment in which the field requires more detailed

characterization of core ASD components (social-commu-

nication, restricted/repetitive behaviors) for clinical reasons

(e.g., personalized intervention) and neurobiological rea-

sons (i.e., support finding neurobiological etiology).

Researchers will need efficient, reliable, and valid quanti-

tative, dimensional measures that can help stratify the dis-

order (Lord and Jones 2012). Lai et al. (2013) generated a

list of desired behavioral specifiers toward identification of

subgroups in autism, offering one potential direction for

bringing computational methods to bear. Collaboration

between computational and behavioral scientists holds

immense potential for advancing knowledge of the highly

complex condition of ASD, and in so doing underscores the

importance of conducting research that attains the highest

standards of quality, reliability, and validity.
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Appendix 1: Additional Methodological Details

Additional Methodological Details for ADOS Module 1

Data Experiments

The AGRE and BID ADOS Module 1 data demographics

are provided in Table 3 for the experiments shown in

Table 1 and Fig. 3. For the BID data, BCE diagnosis is also

available, although we do not utilize it in this paper.

To replicate the Wall et al. (2012a) proposed 8-code

selection as in Table 1, Weka’s ADTree classifier was

used. In this case, the algorithm was allowed to tune itself

to the given training data, but was limited to making rules

using only the proposed 8 codes. Wall et al. (2012a) did not

specify whether the code scores were first re-mapped as in

the ADOS algorithm (e.g., 3 is mapped to 2). We chose to

re-map because: (1) from the tree-diagram provided by

Wall et al. (2012a) it appears the codes were re-mapped;

and (2) codes were re-mapped first in similar experiments

by Wall et al. (2012b). Additionally, we noticed the
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selected codes did not match the proposed 8 regardless of

code re-mapping or not.

Classification performance of ADOS diagnosis with the

ADTree was evaluated (Fig. 3). Tenfold cross-validation

was used. Three variations of input feature sets are con-

sidered. (1) All 29—all 29 codes are included, as was done

in Wall et al. (2012a). (2) Proposed 8—only the 8 codes

proposed in Wall et al. (2012a) are input. (3) Remaining 21

–the remaining 21 of 29 codes not in the Proposed 8 are

used for classification.

The performance metric is unweighted average recall

(UAR), the mean of sensitivity and specificity. Many

machine learning algorithms optimize for accuracy—also

known as weighted average recall (WAR), since it is a

weighted summation of sensitivity and specificity, depen-

dent on the class priors—or an approximation thereof. One

option for directly optimizing UAR is to balance classes

through upsampling or downsampling (Rosenberg 2012).

Since the ADOS Autism class was much larger than the

ADOS Non-Spectrum class, the ADOS Autism class can be

downsampled or the ADOS Non-Spectrum class can be

upsampled to optimize for UAR. In our experiments, we

chose the latter. Upsampling was performed by adding

exact copies of samples from the minority class only within

the training data subset, in order to keep training and

testing data independent. While other statistical methods

exist for upsampling, they rely on certain assumptions

about the data. For example, when randomly sampling

from individual code scores to generate the entire set of

scores for a simulated instance, it is possible to generate a

set of scores that is very unlikely or impossible to occur in

the real-world. Rather than making such assumptions, we

upsampled whole observed data instances from the training

data.

Class imbalance is also observed for the ADOS ASD

(ADOS Autism and ADOS Autism Spectrum) versus ADOS

Non-Spectrum experiments. The ADOS Autism class has

many more samples in the AGRE and BID data than the

ADOS Autism Spectrum class. In order to show a repre-

sentative effect from the middle, more-subtle ADOS Aut-

ism Spectrum class, the ADOS Autism class was first

randomly downsampled during training to be equal in size

to the ADOS Autism Spectrum class. Then, the ADOS Non-

Spectrum class was upsampled to be the same size as the

new ADOS ASD class (as was done previously in the

Autism/Non-Spectrum) experiments.

Additional Methodological Details for ADI-R Data

Experiments

Data demographics for the ADI-R experiments are pro-

vided in Table 3. Code re-mapping was performed as in

Wall et al. (2012b); in particular, 3 was mapped to 2, and 7

and 8 were mapped to 0 (except for the Onset Age in

Hindsight item, which has acceptable values from 0 to 6).

Tenfold cross-validation was performed. The upsampling

and downsampling for ADI-R diagnosis experiments mir-

rors those for ADOS diagnosis experiments described in

‘‘Additional Methodological Details for ADOS Module 1

Data Experiments’’ section. In particular, when performing

classification with 2-groups, the minority class was up-

sampled. For the case of Affected Status, categories of Not

Quite Autism (NQA) and Broad Spectrum (BS) were first

combined into a Broad-ASD (B-ASD) category; the

Affected Status category was slightly larger, so it was

downsampled to the size of the B-ASD category; then, the

minority ADI-R Non-Autism (B-ASD ? Not-Met) class

was upsampled to be of equal size to the ADI-R Autism

group during training.

Significance Testing for Unweighted Average Recall

UAR is increasingly popular in the machine learning lit-

erature for tasks with unbalanced data in which the recall of

all classes are equally important. However, no established

technique exists for computing statistical significance.

Table 3 Combined table of demographic information for

experiments

A1. ADOS Mod. 1 A2. ADI-R

AGRE BID AGRE BID

# Sessions 984 1,033 1,169 680

Mean age (years) 6.76 4.95 9.01 9.24

Stdv. age (years) 3.11 3.45 3.02 3.01

Fraction female 0.22 0.23 0.23 0.24

ADOS: autism 942 858 – –

ADOS: autism spectrum 30 73 – –

ADOS: below cutoffs 12 102 – –

ADI-R: autism – – 1,027 462

ADI-R: non-autism – – 142 218

AffS: autism – – 1027 –

AffS: not quite autism – – 19 –

AffS: broad spectrum – – 42 –

AffS: not-met – – 81 –

BCE: autism – 780 – 362

BCE: non-autism ASD – 96 – 146

BCE: non-ASD DD – 82 – 165

BCE: TD – 22 – 2

BCE: missing – 53 – 5

A1: ADOS Module 1 data (AGRE and BID) for experiments in

Table 1 and Fig. 3

A2: ADI-R Data (AGRE and BID) for experiments in Table 2

AffS: AGRE ‘‘Affected Status’’, BCE best-estimate clinical diagnosis,

DD developmental disorder, TD typical development
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Some researchers have used the binomial proportions test,

as is done with accuracy, although this is not entirely valid.

Accuracy is a weighted average of individual class recalls,

weighted by the corresponding class prior. UAR is an

unweighted average of individual recalls. Statistical tests

exist for accuracy, sensitivity, and specificity; but no

established test yet exists for UAR.

We propose using a slightly modified version of the

exact binomial proportion test—we use the exact test since

the data are not always sufficiently large for a normal

approximation. Since UAR is an unweighted average of

individual recalls, it is equally influenced by the recall of

either class. The recall of a class with very few samples

(e.g., 12) can vary much more than recall of the majority

class (e.g., 942); notably, the machine learning algorithm

does not typically consider class-size when optimizing for

UAR. As such, the minor modification we made was to

reduce the sample size N from 954 (12 ? 942) to some-

thing smaller—in particular, N_eff (effective N). We set

N_eff to twice the size (since there are two classes) of the

minority class. In our example, N_eff is consequently 24,

compared to the original N of 954. The negative implica-

tion is that some of the statistical power from the confi-

dence in recall of the majority class is discarded; but the

benefit is that the statistical power in the minority-class

recall is not grossly exaggerated. Thus, this test is con-

servative, and is less likely to create false-positives.

Appendix 2: ADOS Module 1 Behavioral Codes

See Table 4.

Appendix 3: Additional Performance Measures

Here we present additional performance measures from our

classification experiments with the following disclaimer:

individual results should not be contrasted with metrics

other than UAR, the mean of sensitivity and specificity,

because the machine learning algorithms only optimizes

for UAR in our experiments, and thus are not concerned

with measures like sensitivity and specificity individually.

That is, an algorithm is only concerned with reaching a

peak in UAR. The other statistical measures may be

viewed as a random realization that achieves the observed

UAR; thus, comparison of, for example, sensitivity

between individual results may be inappropriate.

We understand that analysis of each of these measures is

standard in diagnostic research. However, our experimental

Table 4 List of the ADOS Module 1 behavioral codes

Code category Code

label

Code title

Communication A1 Overall level of non-echoed

language

A2 Frequency of vocalization

directed to others

A3 Intonation of vocalizations and

verbalizations

A4 Immediate echolalia

A5 Stereotyped/idiosyncratic use of

words or phrases

A6 Use of others’ body to

communicate

A7 Pointing

A8 Gestures

Table 4 continued

Code category Code

label

Code title

Reciprocal social

interaction

B1 Unusual eye contact

B2 Responsive social smile

B3 Facial expressions directed to

others

B4 Integration of gaze and other

behaviors during social

overtures

B5 Shared enjoyment in interaction

B6 Response to name

B7 Requesting

B8 Giving

B9 Showing

B10 Spontaneous initiation of joint

attention

B11 Response to joint attention

B12 Quality of social overtures

Play C1 Functional play with objects

C2 Imagination/creativity

Stereotyped behaviors

and restricted interests

D1 Unusual sensory interesting in

play material/person

D2 Hand and finger and other

complex mannerisms

D3 Self-injurious behavior

D4 Unusually repetitive interests or

stereotyped behaviors

Other abnormal

behaviors

E1 Overactivity

E2 Tantrums, aggression, negative or

disruptive behavior

E3 Anxiety
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results stand primarily as empirical support of certain

methodological flaws present in the experiments of Wall

et al. (2012a, b); as such, we compare results using the

measure that the machine learning algorithm optimizes,

UAR (technically it optimizes accuracy, but it effectively

optimizes UAR since we balance classes during training.)

We also note that analyzing true diagnostic validity of this

approach would be further complicated by the fact that the

ADOS has its own diagnostic error.

The following tables present six measures: unweighted

average recall (UAR); sensitivity; specificity; positive

predictive value (PPV); negative predictive value (NPV);

and accuracy. Expanded results for the ADOS (c.f., Fig. 3)

are presented in Table 5, while expanded results for the

ADI-R (c.f., Table 2) are displayed in Table 6.
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